© DIRHA Consortium 2012-2014

Distant-speech
Int tion fi
o) e
DTRHA| ZF

' jl Applications

-

e —

FP7-ICT-2011-7 288121
http://dirha.fbk.eu

Deliverable 5.1

Design of components for understanding,
dialogue management and feedback to the user

Authors;

Date:
Document Type:
Satus/Version:

Dissemination Level:

Roberto Manione (NewAmuser),
Fiorenza Arisio (NewAmuser),
Elisabetta Gerbino (NewAmuser),
Claudio Giuliano (FBK),

Marco Matassoni (FBK)

March 18", 2013
R

Final 1.0

PU

© DIRHA Consortium 2012-2014

DIRHA

D5.1 - Design of components for under standing,

dialogue management and feedback to the user

Project Reference

FP7-1CT-2011-7 - 288121

Project Acronym

DIRHA

Project Full Title

Distant-speech Interaction for Robust Home Appiaret

Dissemination Level

PU

Contractual Date of

Delivery

December 31, 2012

Actual Date of Delivery

March 15, 2013

Document Number

DIRHA_D5.1_20130315

Type R

Satus & Version Final 1.0

Number of Pages 3+83

WP Contributing to the

Deliverable WPS

WP Task responsible Roberto Manione (NewAmuser)

Authors (Affiliation)

Roberto Manione, Fiorenza Arisio, Elisabetta Geaohi

(NewAmuser), Claudio Giuliano, Marco Matassoni (FBK

n

Other Contributors

Reviewer

EC Project Officer

Pierre Paul Sondag

charts, state machines,

Keywords: understanding, dialog management, voice user aderfvoice recognition, staf

Abstract: This document describes the achievements obtaimedgdYear 1 in the DIRHA
project towards the developments of components cdiitoéhandle and fulfil user reques
expressed through spoken utterances.
The Dialog Manager, the Speech Understanding, tbmpt Producer, and the House St
Keeper are devoted to figuring out users’ requigsta their utterances and fulfilling thern
issuing the proper commands to the House Automatystem; to accomplish this task th
gather input from the rest of the DIRHA systempanrticular Source Localization, Spee
and Speaker Recognition, dealt with by other WR&@fproject.

5tS

ate

=)

ey
ch

DIRHA_D1.2_20130220

© DIRHA Consortium 2012-2014

IDIRHA

D5.1 - Design of components for under standing,

dialogue management and feedback to the user

Contents

O | 1 £ To 18 o 1o o TR PTTPPPPPPP 1

2. DIRHA approach to Concurrent Dialogue Management...........cccccceeveeeeieieeeeeeeeennn. 3.
21 Introduction to Dialog Managementccccccuueueiiiinieee e 3
2.2 Design choices in the DIRHA Dialog Management...........ccccoeveeeieeeeeeeeeeeeeeeennnnns 5

3. Natural Language Understandingooceeceeeoiiiiinnioeeeeeeeeeeeceeeeeiiii s 10
3.1 Grammar-based approachcccooiieeeeiieei e 10
3.2 Data-driven apPrOACK oo e e e et e e ennne e 14

4. Design of the State Based Concurrent Dialog Mana..............ccccoeeeeeeeviiieeeeeiinnsnnn 24
4.1 Introduction to the MIA-XML [anQUAJEceeeerrmmmmmniiiiaaeeeeeeeeeeeeeeeeiieeeieeees 24
4.2 The Core Constructs of the MIA-XML language...........ccoovvvevveviviniiiiiiiieeeeeeeen 30
4.3 Executable Content in the MIA-XML [anguage..........ccouuvviviviiiiiiinniieeeeeeeeeeee 13
4.4 Data modelling in the MIA-XML [anguagecccceoveeiiiiieiiiiieeee e 32
4.5 External Communication in the MIA-XML language...........ccccovvveviiivineininnnennn. 35
4.6 Release 1.0 of the MIA-XML @XECULOT ..o iiiiiiiiiiiiiiiiiiiiieee e 37

5. House+User Profile and House+USer State ..oooooo.oooeviiiiiiiiiiiiieee e 40
5.1 The HOUSEHUSEN Profile.........ccciiiiii ittt 40
5.2 The HOUSEHUSEI STALEcooviviiiiiii i oo e ettt eene e e e e e e e e e e 41
5.3 Synchronization among physical resources angseiState...............covvvvvviiienennnn. 44

6. Integration of the CDM within the DIRHA envirommt..............cccceeeeeeeievvieveeiiinnnnn 45

7. Design of the User Interface Dialogue FIOW wccovveveeveiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e, 50
7.1 Introduction to the Dialog FIOW.........coceiiiiiiiii e 51
7.2 Discussion of the dialogue floW..........ceeeeiiiiiiii e 54

S T O 0] [od [V] o] o K= TS UPRPPPPTTTTRRPPPIN 62

Appendix 1. The MIA-XML Reference Manualcccoovvvveiiiiiiiiiiiiiee e, 67
Al.1 Core Constructs of the MIA-XML [aNQUAGJE . cuuuureerrrrrrrrrnniiiiaiieeeeeeeeaeeeeeeeeiennd 67
Al.2 Executable Contentin the MIA-XML languag€........cceeeerrrrrreieeiiiiiiiiiiinnnn, 72
Al1.3 The Data Model in the MIA-XML [anQUAQeccccooviiiiiiiiiiiiiiiiiiiiee e 76
Al.4 External Communication in the MIA-XML language........c.cccceeeeeeeeeeveveeenniinnnnnns 78
Al.5 The DTD of the MIA-XML language as of Releaskl............ccceeeeiiiiiiiiiiiiinnnnnns 82

DIRHA_D1.2_20130220 iii

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

1. Introduction

This document describes the activities and achiewgsin Year 1 of the DIRHA project in
under standing anddialog management, that is the part of the project dedicated to ustaed
and negotiate users’ requests from their utterarjgathering input from the rest of the
DIRHA system, in particular the speech/ speakepgettion and the source localization
components, described in other deliverables) tolampnt them through the House
Automation system.

While in a few cases this job will simply be to emte the requested command and play a
confirmation prompt back, in most cases the DidMtamager shall guide the user to complete
the needed formation through additional prompts possibly confirmation requests for the
most important functions.

Moreover, the Dialog Manager shall be able to hamdbre than one dialogue at the same
time, in case more users interact with the systeym fdistinct positions in the house (i.e.
rooms) at the same time on separated issues, kepémineach of them its state; such a
feature, taking advantage of the microphone netvemt the source localization resources
built in the DIRHA system, will allow handling ordifferent dialog in each room of the
house; such dialogues will be handled by one si@glacurrent Dialog Manager, handling
the House State as well in a coordinated way; thisuld potentially allow the
implementation of behaviours triggered by the jaitatte of the various dialogues going on at
the same time.

The document discusses the following components:

TheDialog Manager is in charge of conducting the interaction witk tiser coordinating the
other modules towards the goal of gathering frora tiser the information needed to
accomplish the requested task; multiple turns aliodi could be needed in case the user is not
providing enough information in its first utterance it is not fully recognized; in such a case
dedicated questions are asked, generating the mpogapts to obtain by the user the needed
information to operate the house automated devi&esntroduction to Dialog Management
and a discussion of the approach followed withas EHRHA project can be found in Section
2. the reusable concurrent dialog manager enginelaged in the project is described in
Section 4.

The Speech Under standing module is dedicated to parse the users’ utterameesturned by
the ASR at the purpose of extracting the infornmatiteeded by the Dialog Manager;
typically two approaches can be followed to accashpthis task. The most established
solution is based on knowledge: defining suitalvlrgnars allows parsing the utterance and
extracting the meaningful components. A grammaci§ips the patterns of words accepted
by the recognizer: these constraints simplify telated semantic interpretation but require
specific knowledge in the design process; moreovecognition can fail in case of
unexpected input. Hence, an alternative data-drigpproach is being investigated: a
statistical learning procedure can be in principlere flexible and able to manage also
unlikely requests. A discussion of the Speech Wstdading approach followed within the
DIRHA project can be found in Section 3.

The House State Keeper module is in charge of holding the Configuratidntloe specific
house to be handled (i.e. the House Profile) aedsftecific State of each and every item
contained in the House Profile (i.e. the Houseejtamteracting with the House Automation

DIRHA_D5.1_20130220 1

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

system. A discussion of the House+User Keeping cgmbr followed within the DIRHA
project can be found in Section 5.

The Prompt Generator module is in charge of playing audio messagesht® user;
depending on the need they could be pre-recordie@ woessages, voice messages generated
by Text to Speech (TTS) system, or simple chimesbri&f discussion of the Prompt
Generation approach followed within the DIRHA puijean be found in Section 6; however,
for the choice of each and every prompt/chime réfeiSection 7, where one complete
dialogue example is discussed.

DIRHA_D5.1_20130220 2

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

2. DIRHA approach to Concurrent Dialogue M anagement

A dialogue management system is used to simulaeptbcess of a dialogue. Dialogue
modelling is necessary for any type of dialogueithext-based, speech input or using other
modalities. In the age of user friendly interfageleasant and easy interaction is an essential
aspect of the design of any system. Dialogue systeave specific requirements for this,
including adequate recovery from error. The Diakwddanager should be able to identify
errors and adopt a strategy which recovers theglis.

2.1 Introduction to Dialog M anagement

Dialogue management techniques are particularlyefi@al to systems using speech

recognition; spoken language dialogues require isbpated modelling strategies, but these
in turn can provide a level of constraint that caitigate the shortcomings of speech
recognition technology.

The Dialogue Manager is the heart of a spoken laggwsystem, as its main purpose is to
guide the user to provide the needed informatiomrter to reach this goal it coordinates the
activity of several components, controls the diallmgv, and communicates with external

subsystems. The Dialogue Manager may exploit meaolgniques which include discourse
analysis, knowledge database query, and systeronaptediction based on the discourse
context.

Main roles of Dialog Management

In general, the DM accepts as input the best etirofthe user's request, represented as a
semantic (multislot) frame produced by the Speeebolgnition and Understanding modules,
and outputs system responses together with operadimmands to the executive subsystems.
The system responses have to reflect the discarostext by maintaining the dialogue
history. Although the roles of the DM may dependlos type of task where it is involved, its
main roles include:
e Searching and providing query results by connectimgan external knowledge
database, based on the current input and the dfsoantext
» Asking further slots of information to submit arpappriate query
* Requesting to confirm unclear information slots/ando rephrase if the user's input
is out-of-coverage.

Degreesof Initiative

A dialog consists of a sequence of user and systens which usually depend on the
discourse context. The process of dialog can b&edeas an exchange of information in
which the initiative may shift between the user #mesystem.
The term initiative is related to who directs thegression of the dialog. In general, the
degrees of initiative in the spoken dialog systathifito one of the following strategies:

» System-initiative: The system has the initiativggtiode the dialog at each step.

* User-initiative: The user takes a control of thalalys, and the system responds to

whatever the user directs.

DIRHA_D5.1_20130220 3

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

* Mixed-initiative: The system has overall control tok dialogs. However, the users
can barge in and change the dialog direction.

In a system-initiative dialog, the system usuaBisaone or more questions to extract some
slots from the user step by step. After enoughssdoé filled, it can submit an appropriate
guery to the external knowledge database.
In a user-initiative dialog, the user takes conwblthe dialog although the system may
sometimes ask confirmation questions if some slsunclear.
In a mixed-initiative dialog, the system is suppbs$e control dialog, but the user can have
some flexibility at times to provide more inform@tior to change the task.

A number of different approaches to the Dialogu@aaggment problem have been developed
to date in the community. They can be classifieéd two main categories; knowledge-based
dialog management, and data-driven dialog managemen

K nowledge-based Dialog M anagement

Early dialog systems such as SUNDIAL [1] and ARIERE were designed by application
developers who have domain-specific knowledge. &lsgstems are usually confined to both
highly structured tasks and system initiative diglowhere a restricted and regularized
language set can be expected. In this knowledgedbagproach the state behaviour of the
whole system is usually abstracted into some kihtcontrol flow diagram’, i.e. a “flow
chart” (for the state-implicit approach, such as YoiceXML [3]), or a “state chart” (for the
state-explicit approach) or other formalisms suéab expressmperative behaviour.

A reusable, domain-independent dialog engine manages the conversation by executing the
given dialog task specification, as in the casthefDIRHA Concurrent Dialog Manager.

The Dialog Manager knows and updates the “statethef dialogue according to input
utterances, playing prompts and setting recognitiontexts (e.g. grammars or language
models) according to the current state. In this ,wWay each state the needed prompts and
recognition contexts can be specified: the advaniagthat the Speech Recognition and
Understanding modules are requested to recogniznsigsmaller vocabularies (e.g.
containing the set of utterances that are allowetthat state only) and this potentially brings
high accuracy; conversely, the disadvantage isthieatialog can become too constrained if
the dialog flow does not allow users to easily “pinto different parts of the dialog; this
disadvantage can be overcome making the dialogitiefi more sophisticated, hence more
complex.

This approach is often used for rapid prototypinigdealog systems for strong-typed
interactions with clearly-defined structures andalgo[4]. This approach has also been
deployed in many practical applications becausesaimplicity.

Data-Driven Dialog M anagement

More recently, the research community for Dialogugnagement has exploited the benefits
of data driven approaches to Speech Recognition Netdral Language Understanding.

Although a data-driven approach requires time comsg data annotation, the training is

done automatically and requires little human su@wm. In addition, new systems can be
developed at only the cost of collecting new datanioving to a new domain; this requires

less time and effort than the knowledge-based a&ubr.o

DIRHA_D5.1_20130220 4

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

The behaviour of such systems is abstracted byat“fiow” or other formalism suitable to
expresgeclarative behaviour: a production system (either forward or backwdrdiging) is
usually derived from the data flow network ableptan and execute the task of gathering all
the needed information.

The advantage of such an approach is that the dbdialog needs not to be designed in
advance, being it automatically determined by thedpction system; the disadvantages are
that the ASR must recognize larger vocabulariefngo@ exposed to the whole set of
information for every turn of dialog, yielding potelly lower accuracies; moreover, the data
flow network and the consequent production systeamsbecome complex when the task to
be accomplished becomes more articulated.

Practical deployment of Data-Driven based dialogteays has encountered several obstacles
[5]. For example, the optimized policy may remowatcol from application developers and
the refinement of the dialog control is difficulthese are serious problems because the
developers should have the opportunity to easihtrobthe dialog flow in practical systems.
For example, there are some studies on how to ratitional knowledge-based Dialogue
Manager design with Data-Driven based DM to reftimiain dependent business rules and
to reduce the large policy space [6] [7]. Howeubis approach still needs improvement
before it can be applied to developing practicalaj systems.

Support for Multimodality

In more recent years, as voice only systems haea beplaced by multimodal ones (e.g.
systems able to react to both voice and other “mipdich as keyboards, remote controls,
gestures, ...) the State Based approach has beenviaalg adopted for its versatility; this is
the case of SALTby Microsoft, CIMA (adopted in DICIT) [28], etc.

Among such approach the maximal versatility is gibg the “state explicit” approach. This
is the approach adopted in DIRHA.

2.2 Design choicesin the DIRHA Dialog M anagement

The DIRHA Dialog Manager will be state based andcisely, state-explicit; as briefly
discussed in the previous section this choice caenpially yield the highest accuracy in the
voice-related processing, as it allows directing tASR and possibly other DIRHA
subsystems according to the particular state as$timedialog over time.

Such a flexibility will play a crucial role in DIRHN, as more than one dialog could take place
in the same house (i.e. one per each room) andtmte dialogs could interact one with the
other.

As anticipated in the previous discussion, togeth#gh the advantage of versatility and

accuracy, the state based approach has the digadeaof potentially needing a complex

state design to provide enough flexibility in theeuexperience: in order to help cope with
the dialog complexity, a powerful formalism has mezhosen to design the dialog State
Machines: the Harel's State Charts [29] definedhia late 70s: such a formalism has been
adopted in the State Charts “graphic language” BITCand UML and has been taken by

W3C as the basis for the design of the SCXML laggya0].

! http://msdn.microsoft.com/en-us/library/ms994629.as pXx

DIRHA_D5.1_20130220 5

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

SCXML and MIA-XML based State Charts

The main advantages of State Charts over more lségie machines approaches are the
following:

1. Allow concurrency (i.e. more threads of flow withansingle state machine), with
possibility of synchronization.

2. Include data modelling (i.e. allowing to completegfine the behaviour of a system,
not limited to the control part) and encapsulatbaata, for modularity.

3. Allow state nesting, to improve the expressivity tbé language (i.e. making the
dialogue definitions more compact).

At the time of writing the SCXML specification igdilsin the state of Last Call Working
Draft; however the last issue (Dec tH& 8012) will hopefully be finalized soon.

Due to the relative instability of the specificatithe DIRHA implementation started around
M1, that is the beginning of 2012), and also toglaened kind of usage (somehow different
from the one envisioned by W3C), the DIRHA implenation does not fully cover the
specification, being somehow lightweight in sompes$s and adding some original features;
however it covers the majority of the SCXML defiait; for this reason we named it “MIA-
XML”

Section 4 of this document discusses in detaiMb® XML formalism and Appendix 1 will
contain the reference manual; for the rest of ikeussion here it's enough to notice that the
one dialogue specification, expressed in MIA-XMLparsed and interpreted by the MIA-
XML executor which implements (i.e. runs) the dge state machine interacting with the
rest of the system (i.e. its “ecosystem”).

Unlike other approaches, the MIA-XML executor ig tied to any particular voice of other
technologies; this yields the maximal versatility the kind of dialogues that can be
implemented (i.e. multimodal) and in the run-timevzieonments where it will be deployed,;
actually it is implemented as a C++ program, hepodable to virtually any computing
platform: from Linux to Windows, to MAC OS, iOS, Aroid, etc.

The technology-agnosticism of the MIA-XML execuisrcompensated by the adoption of
the most spread communication technology: TCP-IB &n particular HTTP; the state

machine being executed can exchange (i.e. recadéransmit) “events” with attached data
in form of POST payloads of HTTP to and from any@&adn the available IP network,

including other instances of the MIA-XML executoinning other dialogues.

The “events” are sent in asynchronous way, thatiBOST payload sent from node A to
node B is acknowledged by B as soon as it is receiiowever this is not a feedback to the
requested action; when a reply to the action iset@ent from B, a new event is sent by B to
A in the same way; such a reply event is in tutmawledged by A.

Acknowledges can be positive, wiiror Code = 200 OK or negative, with some variants
of 40x code.

Such a choice provides a great flexibility in timeplementation of whatever dialogue: the
only requirement is that the chosen technologicajirees are able to send or receive the
“MIA-XML events” through a TCP-IP network; the cloa is also fully coherent with the
expected reaction times for a dialogue systemcapatencies within local TCP-IP networks
are in the range of milliseconds; in the next phasethe project, some experiments could
also be carried out geographically displacing saoues of the system.

DIRHA_D5.1_20130220 6

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Figure2-1: shows a generic example of “ecosystem” foradod system based on the MIA-
XML executor; in the general case each and everguleomust implement both the http
server and client roles, as it needs to both sewdraceive “events” (i.e. POST payloads);
however the number of open channels shall be minima

For voice based systems one of the “event produeglisbe the ASR+SU, while one of the
“event consumers” will be the TTS or a pre-recorgezmpt player.

Dialog

Spec (mia_xml)
State Chart

commands ﬂ

mia_xml
__/ executor

results @

TCP-IP natwark

"mia_xml event"

producers "mia_xml event"

responses COnsumers

Log, trace

Figure 2-1: the mia_xml executor and its “ecosystem”

Possible Structure of Dialogue State Machinesin DIRHA

The MIA-XML executor will be interfaced at leasttite ASR (encapsulating most of the rest
of the DIRHA system, such as the Speech Undersigndource Localization, Speaker
Recognition,), the Prompt Generator (i.e. TTSpodmpt player), Home Automation
system; in the following, those subsystems wilté&ierred to as the dialogue “ecosystem”.

The anatomy of the DIRHA dialogue running on theAMKML executor is one State Chart
with several parallels threads of execution shatirgghouse configuration and actual state;
in the following a possible set of parallel thre@lseported:

1. one parallel thread of dialogue for each area ®ftbuse (i.e. a room, or a different space
partitioning) where a separate dialogue can taleeplthe space partitioning will depend
upon the Speech Localization algorithm being predidn DIRHA: speech input and
output coming and going to/from the MIA-XML executand its ecosystem will be
tagged as belonging to a specific area (exceptwifisbe: unknown-source and all-
destinations)

2. one coordination thread handling speech input witknown source and other house-
wide commands.

3. one thread updating the House state among thegdaald the real house: such a thread
will update the dialog internal state of the houpen reception of update messages sent
by the house automation system in case the staseclanged outside the DIRHA

DIRHA_D5.1_20130220 7

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

dialogue and will issue commands to the House aatiom system upon receiving a
command through the dialogue.

Other attribution of parallel threads to physicatitees are possible, such as attributing one
parallel thread of dialogue to each user of theshouut this could be more difficult to
achieve; the actual decision to be implementedhbeltaken when finalizing the design of the
final DIRHA prototype.

Relationship among Dialog Manager, ASR and Speech Under standing

In the interaction between the (State Machine preded by the) Dialog Manager and the
ASR which encapsulates the SU module, there is stanalave relationship: the former

keeps the current state of the dialogue and dithettatter towards a specific goal (sending a
specific activation event) while the latter, oncé\ated upon a specific goal, waits for a user
utterance and aims to the requested goal. Oncdedathe requested goal, the ASR+SU
returns a number of (predefined) semantic slothéomaster, sending a specific recognition
event.

The above sketched approach exploits the abilitthefDialog Manager to hold the current
state of the dialog, hence activating the ASR+Sléroa specific subset of the whole
language domain (as an extreme example, when #hegdneeds a simple “Yes/No” answer
it would be useless-and harmful to accept a voeapulrger than “Yes”, “No” and a few

tens of synonyms.

The ability of the ASR+SU to take advantage of sacltfadvice” can lead to better accuracy
in the recognition; with this respect, a shortodtction to the difference among the two
approaches to SU to be evaluated and compareceifirgh project phase are reported here;
such techniques will be discussed in deeper det&éction 3.

Grammar-based: the utterance is recognized and semanticallyepoy the ASR+SU using
one or more grammars according to the requesteld §emantic slots could be defined so
that parsing rules could fill them when the rul@jplied. This approach has the disadvantage
that each grammar must be designed by hand: famnthre; grammar based Understanding
would never be able to recognize an utterance ¥Was not handled by a grammar; the
advantage is that it fits well into the state-baapgroach as one set of grammars could be
passed by Dialog Manager to the ASR+SU for any ipdarn of dialog. Furthermore, a
localization of the whole system for different lalages would require the translation of the
grammars from one language to the other, a relgteasy task.

In the following, a simple example of Yes/No gramnsareported.

<?xml version="1.0" encoding="1S0-8859-1"?>
<grammar version="1.0" xml:lang="en-GB" root="comma nd">
<rule id="command" scope="public">
<one-of>
<item> <ruleref uri="#yes"/> <tag>.var</tag> </item>
<item> <ruleref uri="#no"/> <tag>:.var</tag> < /item>
</one-of>
<tag><@command $var ></tag>
</rule>
<rule id="yes">
<one-of>
<item>yes</item>

DIRHA_D5.1_20130220 8

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

<item>correct</item>
<item>right</item>
<item>ok</item>
<item>confirm</item>
</one-of>
<tag>return("true")</tag>
</rule>
<rule id="no">
<one-of>
<item>no</item>
<item>incorrect</item>
<item>wrong</item>
<item>not ok</item>
</one-of>
<tag>return("false")</tag>
</rule>
</grammar>
Notice the semantic slot named “command” filledhatihe only two possible values (i.e. true

and false) as side effect of parsing rules.

Data-driven: the utterance is recognized by the ASR usingrgelatatistical Language
Model. The recognized string is then interpretedtiy Speech Understanding component
that maps the word sequence into a frame-semaeresentation of its meaning. The main
advantage of this technique is that an utteranodoeanterpreted even if it was not originally
contained in the training set or specifically ceeerby the handcrafted grammars. The
disadvantage of this approach is that it requirdarge amount of semantically annotated
data; the localization of the system for anothergleage would require to acquire and
annotate a complete training set for the new laggua

As the two approaches have both advantages andivdistages the project plan to investigate
both: for example, where the expected utterancésravige over a narrow vocabulary (i.e.

the yes/no case described above) the grammar abpval be used; when the vocabularies
are larger (i.e. the initial menu, or the selectidm music song to be played) wider statistical
Language Models could be chosen. From the genesddManagement architecture and
even design of the State Machine point of view,hsac choice would be completely

transparent.

DIRHA_D5.1_20130220 9

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

3. Natural Language Under standing

The speech understanding component aims at extractmeaning” from the recognized
utterance. A well-studied approach is based onude of semantic frames: it has been
adopted in many spoken language processing taskewiarious pieces of information need
to be collected from the user; as such, a frameebagstem is limited to a restricted domain
and has a relatively small semantic space. Thigtstre is usually modelled by templates
represented by semantic frames, whose frame elsen{entslots) identify the requested
variables. The goal of a frame-based understanslystem is to select the proper semantic
frame for the incoming utterance and fill from #gexjuence of recognized words its slots with
the actual values.

A popular solution is based on knowledge: definguitable grammars allows parsing the
utterance and extracting the meaningful componemtss authoring process requires
expertise and is usually expensive so alternatata-driven approaches are currently studied,
where a statistical learning procedure can in gulegprovide a more flexible and powerful
understanding. Indeed, the related field of natlaaguage understanding mainly focus on
understanding general domain written texts andctiveesponding semantics is defined in a
broader sense (e.g. using thematic roles). Henaay monstraints related to the applicative
domain should be introduced; although this in pplecsimplifies the problem, when dealing
with speech other variables should be taken intcowtt such as recognitions errors,
spontaneous speech phenomena (disfluencies andetiefiormed expressions) and out-of-
domain utterances. So, robustness is a major iassggeech understanding since the system
should handle any input, isolating in the recogaig&ing accepted by the grammar or the
parser only the current concepts important for ghen domain. At the same time, this
generalization feature may introduce ambiguities @auce the accuracy.

In the DIRHA project both approaches are pursuet wie intention to compare the safer
but limited use of grammars with the more geneealiparadigm based on statistics. As better
explained in the dedicated section, the work ondat-driven approach is considered as
medium-term research activity and the resulting ponent will not be directly integrated in
the intermediate prototype.

3.1 Grammar-based approach

The knowledge-based approach adopting semanticngaasnrequires the exact matching of
input sentences to the designed rules: naturaleegmns or uncommon formulation cannot
be properly handled by the recognizer, leading ore that often change the semantic
content of the hypothesis. As such, it is importantarefully design the grammars in order
to deal with these possible phenomena: specifardilare able to model these less predictable
portions of the sentences, assuring the correatifamtion and classification of the relevant
semantic content. For example it is possible te tako account courtesy forms (e.g. please)
or synonyms (e.g. light, lamp, abat-jour). On tlieeo hand, the resulting grammars cannot
be extremely large because in this case recognpenfiormance usually drops. A mixed
solution could represent a feasible option. Indesdnteresting feature of the FBK ASR
system is the capability to handle recursive ttamsinetworks: the arcs in the network can
be labelled not only by the words but also the renfeother networks. These networks can

DIRHA_D5.1_20130220 10

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

be compiled by mixing in an arbitrary manner gramsriaased on regular expressions and
statistical language models. This feature allows designer to model directly common
expressions like “yes/no” as well as to handle nameplex utterances thanks to statistical
language models. At the same time, the items beignip a class (e. g. a device) can be
dynamically changed without a complete reload & tiets in the recognizer. Hence this
flexibility is also linked to a high efficiency iterms of computational load. As a result the
recognizer in the search path produces also thears@nparsing of the (best) string,
identifying the slots and their content.

Hence the adoption of the FBK recognizer for th&BA prototypes will make easier the
integration of the understanding component singe skmantic slots are embedded as
enriched representation in the output. A parséhes required to properly compose and fill
the form for the Dialogue Manager, according togkehange protocol under definition.

The preliminary evidence coming from the WOZ exmpemt indicates that the users tend to
prefer very short commands with well-structuredngrears: this suggests that it is likely that
the grammar-based approach can provide a reliahleeivork for the considered domain.
Moreover, due to the daily usage of the DIRHA systesers will probably interact with a

restricted vocabulary, because of habits and Iegreifect.

The impact of recognition errors is currently unawefestigation; a specific set of grammars,
according to the dialogue designed and describethennext sections, will be used to
recognize and semantically parse the WOZ signalmoie general LM based on n-grams
and trained on similar text material is consideasdeference.

I ntegration between ASR and the Dialog M anager

A dialogue description can be directly associated set of recognition grammars which will
be used by the speech recognizer, and which wiltato some semantic labels that allow to
establish a direct relation between the dialoguecepts and the sub-grammars activated
during the recognition. From the speech recognipiomt of view, each concept is associated
both to a sub-grammar and to a semantic label. yEgab-grammar can be recursively
combined to form a bigger language model which Ww#él used to recognize a complete
sentence. The output of the recognizer is not angequence of words, but also includes
information (basically the semantic labels) abdw tsub-grammars crossed during the
decoding step, and thus is a parse tree of thersemt The resulting association between the
grammar identifier and a semantic concept provailesctly an interpretation of the sentence,
at least in the restricted domain under analysis.

For instance, if we consider a sample sentenceduwirolling the light: “please switch on the
light in the living room” a properly combination tiree sub-grammars (ACTION, CLASS,
ATTRIBUTE) may allow the recognition of:

please (ACTION(switch on)ACTION) the (CLASS (lig ht) CLASS) in
the (LOCATION (living room)LOCATION)

where the semantically relevant words can be eedaeasily from the recognized string and
immediately referred to the required action asgedido the label ACTION in a specific
room (associated to the label LOCATION).

In this way there is no need for a subsequent pabszause the relevant information is
already labelled, and only some text processimgdsired to properly edit the output in the
format expected by the DM.

DIRHA_D5.1_20130220 11

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

The application designer can easily build a systatiative dialogue, simply by associating
to each concept a very strict grammar (e.g. aolisievices). On the other hand, a mixed
initiative dialogue can be designed by definingogration grammars (possibly just one) able
to handle all of the concepts of the applicationcase of multiple semantically relevant data
into a sentence, the corresponding concepts caotheated simultaneously.

Grammar design

Although a speech recognizer is able to manage Varge vocabularies, the noisy
environment makes the recognition task extremelypnpiex and can lead to very low
performance. Hand-crafted grammars introduce stoomgtrains in the hypotheses generated
by the recognizer, exploiting the designer knowkdfthe domain.

In the Table 1 a minimal set of possible grammseg 87 for details) is shown:

Grammar Semantic Concept Example
keyword dirha, aladdin, dirha system, activate
open the door
class close the window
complete attribute switch on the light
P action close the door of the kitchen
location open the small window
switch off the light in the living-room
cancel confirm cancel, delete
location location the door of the bathroom
the kitchen door
yesno confirm yes, no, that's right
attribute attribute the red lamp
the small one

Table 3.1 List of possible grammars

According to the dialog design, the required gramsnshould cover utterances comprising
the relevant semantic concepts. In the following thain grammars are described and
discussed using simple examples.

» Activation keyword: the grammar accepts the selected keyword (e.gh&éDlisten to
me”), triggering a dialogue session; the grammgacte any other user sentence (KWS
task). This modality represents the equivalent hptastalk” button in a typical spoken
dialog system: the system is listening but not tiegcto generic speech, only a
predefined keyword actives a dialog session. Timeaséic concept is associated to the
grammar identifiers KW and REJECT. REJECT is madied¢her by a very general
statistical language model or by an ad-hoc gran{mgr phone-loop).

please listen to me (REJECT(@rj)REJECT)

DIRHA_D5.1_20130220 12

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

what time is it? (REJECT(@rj)REJECT)

dirha listen to me (KW(dirha_listen_to_me)KW)

» Location: the grammar accepts a location in order to idietitie object to be controlled;
again, a filler can model parts of speech thatnatesemantically relevant. This modality
is used to select the desired object in case tipdidinstrategy (the default item in the
room specified by the user) cannot be applied. Sé¢meantic concept is associated to the
content of the grammar LOCATION.

(FILLER(@1})FILLER)
(LOCATION(the kitchen) LOCATION)

the one of the kitchen

in the living-room in (LOCATION(the living-room) LOCATION)

» Confirmation: the grammar handles confirmations and rejectidhg. dialog asks for an
explicit confirmation in case of critical operati¢e.g. opening of the main door) or low
confidence (e.g. uncertainties in the acoustic theord). The user can also decide to
abandon the sessions or cancel the requested ioperbt the example the grammar
CONFIRM comprises the two sub-grammars YESNO antlCEL.

yes (CONFIRM((YESNO(yes)YESNO) YCONFIRM)

cancel (CONFIRM((CANCEL(cancel CANCEL) YCONFIRM)

o Attribute: this grammar is used to specify or identify arjeob In some cases it is
required to identify the device to be controlleciagn case of ambiguous requests. Here
the relevant content is associated to the gramnfarRABUTE. FILLER represents an

auxiliary grammar able to match other parts ofstetence.
(FILLER(the)FILLER) (ATTRIBUTE(small)ATTRIBUTE)
(FILLER(window)FILLER)

the small window

(FILLER(the)FILLER) (ATTRIBUTE(red)ATTRIBUTE)
(FILLER(one)FILLER)

the red one

» Complete command: the grammar accepts a complete command sentanafich the
semantic concepts (class, action, location, atijoare directly modeled by specific sub-
grammars. The general request contains all thedevardg semantic concepts,
encapsulated by the grammars ACTION, CLASS, LOCANIOhe optional value of
ATTRIBUTE can help the correct identification oktdevice.

open the door (ACTION(open)ACTION) (CLASS(theoddCLASS)

(ACTION(switch on)ACTION) the
(ATTRIBUTE(red)ATTRIBUTE) (CLASS(light)CLASS)n
(LOCATION(the kitchen)LOCATION)

switch on the red light in the
kitchen

DIRHA_D5.1_20130220 13

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

These basic grammars can then also combined withr anore general expressions or
parallel statistical language models in order tadka more natural expressions. The final
design will take into account the actual setuphefautomatized home.

Evaluation

Usually performance is measured as Word Error Bat@ dialog system that uses grammars
to determining the requested actions the possild® A&rrors have different impact: words
belonging to the embedded grammars are more rdleFaom the dialog point of view a
decoded sentence is correct if the correspondieggretation matches the actual intention of
the user. Therefore, beside WER, it is importanétaluate grammars using precision and
recall. As a result, the reference set has to Ibelled with semantic tags in order to measure
the capability of the grammars to correctly (redegnand) classify the meaningful
information of the sentence. The transcription aathantic annotation of the WOZ data is
the basis for a first evaluation of the designeghgnars and the comparison benchmark for
the investigated approaches.

3.2 Data-driven approach

This alternative component takes as input an utteraand returns as output a structured
interpretation that allow the Dialog Manager tdifuthe user request, or an exception if the
request cannot be interpreted.

To this aim, a solution based on semantic parsfngsers’ requests has been designed and
implemented: a preliminary comparison with a thadial solution based on contextual
grammars has also been carried out.

A semantic parser maps a natural-language sentetcea formal representation of its
meaning. We use semantic role labeling (SRL), aelyidused form of semantic
representation which identifies roles such as ageatient, source, and destination.
Specifically, the implemented semantic parser fanss an Italian sentence into a frame-
semantic representation based FerameNet. FrameNet is a lexical resource that groups
predicates in a hierarchy of structured concept®wk as “frames.” Each frame in the
lexicon in turn defines several named “roles” cepanding to aspects of that concept, e.g.,
participants in an event. Our parser exteSdsafor?, an open source tool for automatic
analysis of the frame-semantic structure of Engtestt developed at CMU. Semafor uses
WordNet® andFrameNet* as lexical and semantic resources.

During the first year of the project, we have fedi®n the implementation of the semantic
parser. Specifically, the following activities halween carried out. First, the tool and models
made available by the Semafor developers have teted on English and the declared
performance has been confirmed on some datasdalateairom the SemEval 2007 and 2010
evaluation campaigns. Second, all the languagerdigpe parts present in the original source
code have been replaced with callsMaltiWordNet®, a resource that includes the lItalian
WordNet, TextPro®, a suite of modular Natural Language ProcessindjNools for analysis

2 http://www.ark.cs.cmu/Semafor
® http://wordnet.princeton.edu/

* http://framenet.icsi.berkeley.edu
® http://multiwordnet.fbk.eu

® http://texpro.fbk.eu

DIRHA_D5.1_20130220 14

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

of Italian and English texts, and the MaltParsedependency parser trained on the CCG-
TUT, a treebank for Italian based on Combinatorye@Garial Grammar. Third, we used the
Evalita 2011 dataset to train and test Semafotadiah data.

In addition, we performed an evaluation on sentemqrecessed by the FBK ASR system in
order to be able to handle input with word errard aentence segmentation errors. Finally,
we are extending the available training data tduste sentences used in the DIRHA use
cases; to this purpose we have developed a spaaifictation platform. In the remainder of

the section, we first describe the FrameNet anda&anthen the porting to Italian and its

evaluation. Finally, we present the related wordt #re open issues.

Framenet

FrameNet [8, 16] is a lexical resource for Englibhsed on frame semantics [15], that is
being created in the context of the Berkeley Fraatgioject. Its aim is to collect the range
of semantic and syntactic combinatorial possietitiof each word in each of its senses
through the annotation of example sentences. Theepual model is based on three main
elements:

* Semantic frames. Cognitive schemata or scenarios necessary to rstade the
meaning of words. They describe situations, objaa$ events and the participants
involved in them (in our case the DIRHA systemhis implicit agent) .

» Lexical units (LUs): Words, multiwords, idiomatic expression®kwg a frame.

* Frame elements (FEs): Semantic roles involved in the situatiorewent expressed by
a frame. They apply to all LUs in the same frame.

FrameNet 1.3, released in 2006, is comprised ofentlkan 10,000 lexical units, 6,000 of
which are fully annotated, and nearly 800 semainéimes with hierarchical relations. An
essential element of the FrameNet database isapeis-based evidence, i.e., every lexical
has to be instantiated by at least one exampleiseat In FrameNet 1.3, more than 135,000
sentences have been manually annotated with frafoeriation.

As an example, we report in Talde2 the FrameNet entry for the WEARING frame.

Frame: WEARING

The words in this frame refer to what CLOTHING a WEARER (or a specific

BODY_PART of the WEARER) has on.
BODY_PART| The body part of the WEARER which is covered by the CLOTHING.,
CLOTHING | This FE identifies the CLOTHING that the WEARER wears.
WEARER The person whose clothing is under discussion.

attired.a, bare-armed.a, bare-breasted.a, bare.a, braless.a, clothed.a,

coatless.a, costumed.a, decked out.a, dressed.a, have got on.v, sport.v

swaddled.a, swathed.a, wear.v [...]

[The leader [werr Wore [a golden helmet]cioing.

She saw that [her]werer [left hand Jgosypt Was bare.

[She]wewer had [an apron Jcimng ON.

Def.

FEs

LU

Ex.

Table 3.2 Example of frame “wearing”

In the first row, the frame definition in naturaniguage is reported, while the second
includes the list of the core frame elements. Tiedtrow contains part of the LU list

DIRHA_D5.1_20130220 15

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

including all frame-evoking predicates, while iretfourth a few example sentences are
reported. All LUs are printed in bold, while therpbes bearing a FE label are reported
between square brackets, followed by the role label

In the remainder of this article, we calhme semantic annotation the annotation of sentences
with both frame and FE (or role) information, asfpened by frame-semantic parsers (e.g.
[10] and [12]). The sub-task of assigning a fraateel to a lexical unit in a sentence is called
frame identification. This concerns both lexicalitsrthat are listed in FrameNet, the so-
called seen LUs, and those that are not preseheinesource, the unseen LUs. When frame
identification is applied to unseen LUs, and letmlshe acquisition of new LUSs, it is also
known as LU induction [23].

The second resource we take into account in thik we® Wikipedia, the largest online
repository of encyclopedic knowledge. At the momanwriting, there are 20 million articles
in 282 languages (over 3.82 million in English @pnwritten collaboratively by
approximately 100,000 regularly active contributarsund the world. This makes Wikipedia
a reliable source of knowledge both for Internefrasand researchers.

Semafor

Semafor [13, 14] is a state-of-the-art open soudeea application developed at CMU that
transforms an English sentence into a frame-semegyresentation in a three-step process.

First, Semafor identifies words that evoke Framefigehes, second, selects frames for them,
and, finally, locates the arguments for each fraiiee frame-semantic parsing is cast as a
structure prediction problem. The system uses gabure-based, discriminative probabilistic
(log-linear) models, one with latent variables termit disambiguation of new predicate
words. The parser is demonstrated to significaatliperform previously published results
and is released for public use under the GPL $ieen

Semafor preprocesses sentences with a standavflaatotations: POS tags from MXPOST
[24] and dependency parses from the MST parserd@2f manual syntactic parses are not
available for most of the FrameNet-annotated docuse

Semafor used WordNet for lemmatization and labedadh verb in the data as having
ACTIVE or PASSIVE voice, using code from the SRIstgm described by Johansson and
Nugues [19].

The probabilistic models have been trained andedesin SemEval'07 data. The system
improves the state of the art at each stage ofegsicg, e.g., frame prediction, boundary
identification, and argument classification.

Our investigation started replacing the MST paragth the Stanford Parser [15], this
drastically reduced the memory footprint of thetegs without significantly changing the
performance on English annotation. This is the @hignged we made to the English version
of the tool, from now on, we focus on the portindtalian.

Semafor for ltalian

Porting the system to ltalian is a challenging tdak to several reasons. First, some of the
resources employed do not have a counterpartliariteor they are not as rich as in English.
For example, the Evalita dataset is the only alkeléraining set for Italian. This training set
is quite limited if compared with the amount of atated sentences available on FrameNet.

DIRHA_D5.1_20130220 16

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Second, we had to replace the whole preprocesgietjne. This point has a strong impact as
Semafor uses a set of heuristics based on thedbnglammar and the output of the English
preprocessing. These heuristics have been pantedlsitten according to the Italian grammar
and the output of the Italian preprocessing.

Finally, the available software is monolithic, dfilt to understand, and expensive to modify.
For example, many part of the code are duplicatkanging just few details. A software
reengineering process would be required, howewethi® moment we limited our action to
modify isolated part of the code.

TextPro

The Italian preprocessing is performed using TextBrstate-of-the-art suite of modular NLP
tools for analysis of Italian and English textsl #lols have been designed so as to integrate
and reuse state of the art NLP components develbpagsearchers at FBK. TextPro is a
pipeline of processors wherein each stage accepasfitom an initial input or from an output
of a previous stage, executes a specific tasksands the resulting data to the next stage, or
to the output of the pipeline. The current versibrthe tool suite provides functions ranging
from tokenization to chunking and Named Entity Rguton. Specifically, we use
tokenization, lemmatization, and part-of-speeclyitag

In addition, we created some heuristics rulesgf@mple, to detect active and passive verbs
by considering a list of transitive/intransitiverls. If the auxiliary verb is to be and the verb
is intransitive then we classify the verb as passatherwise active.

Malt Parser

The parser used is thdaltParser’, a tool for data-driven dependency parsing that loa
used to induce a parsing model from treebank dadat@ parse new data using the induced
model. Malt-Parser was one of the top performingteayis in the multilingual track of the
CoNLL shared tasks on dependency parsing in 20062807. In this project, we used the
parser trained on the CCG-TE|Ta treebank for Italian based on Combinatory Gatah
Grammar [20].

WordNet

Semafor uses JWNL (Java WordNet Library) to actes&English WordNet9. In our porting,
we use MultiwordNet, a multilingual lexical databageveloped by researchers at FBK in
which the Italian WordNet is strictly aligned wiBrinceton WordNet 1.6 .

The Iltalian synsets are created in corresponderitie ttve Princeton WordNet synsets,
whenever possible, and semantic relations are itegoirom the corresponding English
synsets. However, MultiwordNet is made available MgSqgl dump, this required the
conversion of the dump in a format compatible wikie input format of JWNL. The
conversion scripts are made available in the MuttitiNet distribution, MultiWordNet is
licensed under a Creative Commons Attribution 3npdited License.

" http://www.maltparser.org/
8 http://www.di.unito.it/~tutreeb/
® http://www.sourceforge.net/projects/jwordnet/

DIRHA_D5.1_20130220 17

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

Evaluation

The evaluation has been performed on the FLalTsdgtaised at the Evalita 2011 Frame
Labeling over ltalian Texts Task [9]. The trainidgta made available by the task organizers
consists in the merging of two independently crea@asets. The first has been annotated by
Tonelli at FBK [26]. It includes the annotation @5 sentences (605 predicates and 1074
roles) at the syntactic and semantic level undediiL Tiger format also used by the Salsa
project, where the reference syntactic formalism teé annotation is derived by a
constituency-based parser.

The second dataset has been developed at the IP&arby Lenci and his colleagues[21]. It
consists of the ISST-TANL Corpus, a dependency-ttad corpus originating as a revision
of a subset of the Italian Syntactic-Semantic Tagébor ISST, enriched with Semantic
Frames under the XML Tiger format also used by $#adsa project. The whole corpus
contains 650 sentences with 1763 roles. The ragultiaining set thus includes 1255
sentences for about 38 frames. The total amourdle$ completely annotated correspond to
2837 arguments. The test set has been obtainedgthrthe exploitation of the aligned
English-ltalian Europarl section [10]. It consisfs318 sentences, again focusing on 36 of the
training set frames, for a total of 318 targets 86d other arguments.

The evaluation is split in subtasks. Frame Detec{iéD) aims at verifying the ability in
recognizing the true frame of an occurring predicard, and to select it even against
possibly ambiguous lexical units. Boundary Detect{@D) and Argument Classification
(AC) require to locate and annotate all the semaatguments of a frame, which are
explicitly realized in a sentence, given the marledcal unit.

Tables 3, 4, and 5 show the results14 obtainedherP, BD, and AC, respectively, by our
system (Semafor IT) and the 2 participants at el task (CELI and University of Roma,

Tor Vergata).
Systems Semafor_IT | CELINT CELI.WT | TV_.SVM-SPTK TV_SVM-HMM
Frame Precision 69.50% 73.93% 73.93% 80.82% 78.62%
Frame Recall 69.50% 65.09% 65.09% 80.82% 78.62%
Frame F1 69.50% 69.23% 69.23% 80.82% 78.62%
Table 3.3 Results of the Frame Detection task
Systems Semafor IT | CELINT CELI.WT | TV.SVM-SPTK TV_SVM-HMM
BD Prec. 57.27% 45 .88% 40.66% 66.67% 50.70%
BD Rec. 34.46% 20.89% 24.11% 72.50% 51.43%
BD FI 43.03% 28.71% 30.27% 69.46% 51.06%
BD Token Prec. 79.46% 81.12% 78.67% 81.99% 68.02%
BD Token Rec 54.61% 27.06% 33.28% 84.34% T7.18%
BD Token F1 64.73% 40.58% 46.77% 83.15% T2.31%

Table 3.4 Results of the Boundary Detection (BD) task

DIRHA_D5.1_20130220 18

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

Systems Semafor IT | CELINT CELI.WT | TV.SVM-SPTK TV_SVM-HMM
AC Prec. 38.87% 32.55% 27.41% 48.44% 33.10%
AC Rec. 23.39% 14.82% 16.25% 52.68% 33.57%
ACF1 29.21% 20.37% 20.40% 50.47% 33:.33%
AC Token Prec. 54.67% 47.90% 49.49% 62.58% 46.77%
AC Token Rec 37.57% 15.98% 20.93% 64.38% 53.06%
AC Token F1 44.53% 23.96% 29.42% 63.47% 49.72%

Table 3.5 Results of the Argument Classification (AC) task

BD token and AC token results account for the numibfeindividual tokens correctly
classified instead of the number of exact arguments

These results show that the Semafor can be partédltan and the results are comparable
with the state of the art. However, the accuraityrseds to be improved.

We also extended the evaluation to be nearer t®DtR&IA scenario, in which the sentences
to parse can present errors due to ASR. To this amrrecorded some volunteers reading a
subset of the Evalita dataset.

The result consists in 189 sentences out of 318:reéad speech has been then recognized
using a generic ASR trained on Parliament speeek (27,28] for details) in order to
introduce typical recognition errors and evaludite tobustness of the forthcoming parser.
The resulting WER on this set is about 30%: on psepthe ASR system has not been tuned
in order to generate a large number of errors.

System ASR+Semafor IT
Frame Precision 53.96%
Frame Recall 53.96%
Frame F1 53.96%

Table 3.6 Results of the Frame Detection task working on the output of ASR

System ASR+Semafor IT
Frame Precision 19.09%
Frame Recall 10.45%
Frame F1 14.50%

Table 3.7 Results of the Argument Classification task working on the output of ASR

This evaluation cannot be performed using the iaffecorer as it is based on the assumption
that gold and system answers are aligned at takesl, lassumption clearly violated in the
output of a ASR system due to errors and missingfuation marks. Consequently, we had
to rewrite a scorer that could keep into accountha&se problems. The new scorer does not
evaluate BD as text is not aligned at level of tgkeo we can only evaluate FD and AC.
These results are not available for the CELI andViergata systems. Table 6 and 7 show the
FD and AC results, respectively. These resultsespond to the exact match, it is difficult to
obtain the token AC results due to the errors arsdlignment issues introduced by the ASR.

DIRHA_D5.1_20130220 19

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DTRHA

Details on the Speech Under standing Showcase

The first prototype is a Java application thatgné¢es what described above. The application
can be accessed through a RESTful APl and a comrwaadnterface. The input/output
format can be either XML or JSON. The main methades as input a sentence and returns
as output the semantic representation of the semteramely, the recognized frames, the
evoking terms, and the roles involved.

Write a sentence and type Enter to parse it:
Accendi il forno per 10 minuti a 200 gradi

Frame: Change operational state
Lexical Unit: Accendi

Frame Elements:

Core Non-Core

Agent: Not found Degree: a 200 gradi

Cause: Not found Explanation: Not found

Device: forno Manner: Not_found
Place: Not_found
Purpose: Not found
Time: 10 minuti

Figure 3-1: Semantic parsing for an Italian DIRHA-like sentence

Figure 3-1 shows an example for the input sentence “ad¢démoino per 10 minuti a 200
gradi” (turn the oven on at 200 degrees for 10 neisu In the example, the system
recognizes that the term “accendi” (turn on) evotkesframe Change operational state, that
requires an Agent, the entity who changes the tipe&d state of a Device (the oven) and the
Place (not found) in which the device is put intcoat of operation. In the given command,
the Agent (usually the user) and Place (the kittlaga implicit and can be recognized by
other modules of the architecture, or with sim@asoning based on the output of the other
roles and using a description of the environmeuwt. iRstance, knowing that the oven is
placed in the kitchen, we can recognize the rosedlIn this case, Non-core roles Degree
(200 degrees) and Time (10 minutes) are neceseaexdcute the command. The system
returns only the roles for which it has high coefide, if a compulsory role to execute the
command is not found in the input sentence theegystould explicit ask the user to specify
it.

DIRHA_D5.1_20130220 20

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DIRHA

FrameNet Annotation for Italian

chiama [B . [Abandonment] [[Selezionare] ¥ | Annota

EYSSEnEel clima . [Abounding_with] [[Selezionare] $] Annota

fai partire [| E FE FTERD . [Abandonment] [[Selezionare] 3] Annota
attiva il video del citofono . [[Selezionare] 4] Annota

ci sono messaggi . [[Selezionare] 4] Annota

accendi il lampadario . [[Selezionare] 4] Annota

Figure 3-2: The annotation interface that allows users to annotate frames

The Annotation tool

In order to annotate utterances collected withenBirha use cases we developed a specific
tool.

The annotation tool is a PHP application that aflousers to annotate new sentences
according to FrameNet 1.5. Sentences are firseldato a database (MySql) and then made
available for annotation through a Web-based iatexf The user must follow a two-step
annotation process. First, they are asked to selectframe evoked in the considered
sentence. Second, they have to specify the lexiialthat evoked the frame selected in the
first step and to annotate all the explicit sentardles by selecting the token(s) and assigning
the appropriate frame’s roles. For example, Figg42 shows a set of sentences, from a
combo box the user can select the frame. In thenpbka the first 3 sentences have been
already annotated; the assigned frame label is shafter the sentence between squared
parentheses. The lexical unit is underlined andlifierent frame’s roles are highlighted with
different colours. Figur&-3 shows a sentence annotated with the lexicaland semantic
roles. Words to be annotated are selected throwteek button shown below the words, and
the role is selected by means of a combo box sHmiow the words that lists all possible
frame roles. If the annotation must be extendethéofollowing word the users can simply
click the arrow button and the previous annotai®rextended. The annotations are saved
into the database and can be converted to diffemenbtation format (e.g., XML Tiger
format).

DIRHA_D5.1_20130220 21

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Figure 3-3: The annotation interface that allows users to annotate lexical units and semantic roles

Related Work

First, we consider the 2 participants to the Esdhisk. CELI parses the input sentences with
a legacy parser [25] that uses a combination ofedégency based rules (e.g.,
subcategorization patterns) and machine learnimipniques, based on Markov Logic
Networks. Two systems are presented. CELI WT ussstaf hand coded rules for SRL,
while CELI NT only relies on learned rules. Univiggof Roma, Tor Vergata proposed two
kernel-based systems that use SVM as learning itigor Specifically, TV SVM-SPTK
extends the standard tree kernels formulation blyeeltiing a corpus-driven lexical similarity
metrics between terminal nodes (i.e. words in teavés). TV SVMHMM combines
discriminative and generative models. It cast BD AR in a labelling task, without counting
on any information about grammatical dependenamsthe parse tree. SRL has been also
used in the context of Spoken Dialog Systems withenproject Luna, in which a machine
learning approach based on frame semantics obtasnedessful results [11]. Here, a
FrameNet-based parser both for English writtenstextd for Italian dialog utterances has
been designed and evaluated. The results showerttoeis on dialog data do not severely hurt
performance.

Also, a small set of FrameNet-like manual annotetias enough for realizing accurate
Semantic Role Labelling on the target domains pfcl Dialog Systems. [16] present an
extension of the standard evaluation metrics foL 8Rorder to be able to handle speech
recognition output with word errors and sentenagrentation errors. They propose metrics
based on word alignments and bags of relations,cangpare their results on the output of
several SRL systems on broadcast news and coneaisatf the OntoNotes corpus. They
evaluate the relation between the results on tlheasks that lead to SRL, including ASR,
part-of-speech tagging or sentence segmentatioe dimlysis of the performance of
retrained systems shows that the errors of atrdiftelevels (i.e., part-of-speech tagging,
dependency parsing and SRL) are strongly correldtedy conclude that errors are due to
the fact that systems are trained on reference atatasuggest that one possible solution for
improving SRL on speech could be to retrain systemsASR output or modify them to
process word lattices.

DIRHA_D5.1_20130220 22

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Discussion on preliminary results

Besides the standard approach based on hand-crgféedmars, we have developed a
Semantic Role Labelling system for Italian startingm a pool of existing resources and
tools for syntactic and semantic analysis of Emgéiad Italian. In spite of the complexity of
the task, we have implemented a system that cacobwared with the state of the art:
specifically, our system if compared with the pap@ants at Evalita 2011 scores second. We
have also released a spoken version of the Evdditaset and a tool for SRL annotation.
However, several issues have to be addressedd tiea results obtained by the best system.
We think that the main weakness is the performaf¢ke parser that strongly influences the
boundary detection and consequently propagatesrtbes up to the argument classification
phase. Typically, these issues are alleviated Img lbst of heuristics. We limit these
processes to supply information not returned bypdweser, not to fix frequent mistakes. All
these problems are further amplified when we warkhee output of the ASR system. Indeed
we also have some errors at word level and, hahdg,more difficult to understand the
causes of the misclassifications. In order to imprthe performance we need to run an error
analysis on the system with and without ASR. Howgs@ce the DIRHA domain is more
limited, we are confident to have a good coveragerms of language model (either with
handcrafted grammars or statistical) so it is etgueto reduce the parser errors.

Finally, in the targeted scenario the end-userxjgosed continuously to the system and
probably will tend to adapt his/her interactionpgmessively selecting only a few ways to
reach the goal in a minimal number of turns.

Furthermore, since houses are different from ealolrdsee Section 5 for the discussion on
House+User profile), there is the need to adapt rdmgnition/understanding domain
accordingly. To this purpose, the grammar basedoagh seems able to accommodate this
requirement in an easier way, due to its higherutedy.

On the other hand the alternative approach basetRingeneralizes better and in the long-
term can guarantee a good coverage of the curignbdfl services without requiring an
explicit profiling procedure. A comparison carriedt on real interactions in a sufficiently
long period will clarify the reasonable trade-offtween performance and efforts in the user
profiling/customization.

DIRHA_D5.1_20130220 23

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

4. Design of the Sate Based Concurrent Dialog M anager

The Concurrent Dialog Manager implemented withiea BHRHA project is an interpreter of
concurrent State Charts expressed with the MIA-XEhguage, a specialization of XML.

Such an interpreter is being developed as a C+grano (Version 1.0 has been released at
M12 and is being used in the Dialog Showcase)aijtirunning on the Windows OS;
however it is easily portable to other OS, suchLemix, the chosen integration OS for
DIRHA.

The interpreter, in the following referred to as MIA-XML executor works in 3 passes:

1. parsing of the input MIA-XML specification: durintpis pass the language syntax is
checked and the internal data structures are loaded

2. semantic (post-parse) analysis: during this passrifernal data structures are cross-
checked in order to verify the semantic consisteidbe State Chart specification; as
an example, for every transition, the “target” sta searched for; in case it is not
defined, a semantic error is flagged; same ocaurexpressions: each and every used
variable must be defined in the data model; oneomamt by product of this analysis
is that each and every element contained in theifsgion (i.e. states, transitions,
variables, events, ...) are directly indexed by tleenent that uses it; in this way the
execution of the state machine will be very efiitjeas if the state machine was
compiled, instead of interpreted.

3. execution; this pass is iterated over and overrmagatil the program is stopped; at
each iteration the actual Configuration Set (ine $et of active states) is evaluated
and the future Configuration Set is calculatedprepare the next iteration. A major
figure of merit for this kind of interpreters isetliteration time. i.e. the time taken to
evaluate the Configuration Set; thanks to the heaggxing performed in pass 2 the
DIRHA MIA-XML executor is capable of running 1k 0K iterations per second on
complex to medium complexity state charts on lafmtepktop PCs running Windows;
furthermore, such a figure grows linearly with tmeimber of states in the
Configuration Set, with no dependency upon thel tmtanber of steps or other sizes
in the State Machine.

4.1 Introduction tothe MIA-XML language

With the term MIA-XML we denote the subset of th€X8VIL language supported by the
Concurrent Dialog Manager implemented within th&BA project.

The SCXML language is being defined by the W3C ©ainsm [30]; as of end of 2012 it is
now in its Dorking Draft stage and the Last Call éhhanges has just deadlined in Jan the
13th 2013.

The MIA-XML language is mainly obtained by subtiaot of a few elements from the
SCXML language; however some additions have alsm mone; such changes have been
introduced at the purpose of needing a lighter teid executor, suitable to be ported to
lower power devices.

In the following, the MIA-XML language is introdudgpart of the concepts come from the
SCXML material, released by W3C (see [30]); howevance differences have been

DIRHA_D5.1_20130220 24

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

introduced in several places, a full descriptiontted MIA-XML language is reported, for
sake of completeness.

The most basic state machine concepts are Statesilion and Event. Each state contains a
set of transitions that define how it reacts toregeEvents can be generated by the state
machine itself or by external entities. In a trahil state machine, the machine is always in
a single state. This state is called the activeesi&hen an event occurs, the state machine
checks the transitions that are defined in thevacstate. If it finds one that matches the
event, it moves from the active state to the stpezified by the transition (called the "target”
of the transition.) Thus the target state becomeséw active state.

The Harel [5] state notation defines several extessto these basic notions. First of all, the
state machine may take actions (Executable Contesiite taking transitions. Specifically,
each state may contain both ‘onentry’ and ‘oneattions.

Transitions may also contain actions. If a statehime takes transition T from state sl to
state s2, it first performs the onexit actions In then the actions in T, then the onentry
actions in s2. Secondly, in addition to the ‘evaittibute that specifies the event(s) that can
trigger it, transitions also have a ‘cond’ attriéutf a transition has both ‘event’ and ‘cond’
attributes, it will be selected only if an eventrased whose name matches the 'event'
attribute and the ‘cond’ condition evaluates tcetrif the ‘event’ attribute is missing, the
transition is taken whenever the ‘cond’ evaluatesue. If more than one transition matches,
the first one in document order will be taken. THaghe following example, the system will
transition to st1 when event evtl occurs if x isa@do 1, but will transition to s2 if event e
occurs and x is not equal to 1; finally it will gms3 if any other event occurs.

<state id=st0">
<transition event="evtl" cond="x==1" target="st1 ">
<transition event="evtl" target="st2"/>
<transition event="*" target="st3"/>

</state>

Compound States

One of the most powerful concepts in Harel notat®ithe idea that states may have their
internal structure. In particular, a <state> eletmeay contain nested <state> elements. Such
a state is called a compound state (called thenpatate), while the nested elements are child
states. Children states may in turn have nestddrehiand the nesting may proceed to any
depth. At the end of this nesting structure we valch a state which does not contain any
child states: such a state is called an atomie.sW@hen a compound state is active, one and
only one of its child states is active. Convers&aen a child state is active, all its parent
states must be active too. Thus at any point wes lsaget of active states, containing an
atomic state and all of its ancestors. (We will sethe “Parallel States” section that multiple
atomic states can be active at the same time).

Compound states also affect how transitions arecte. When looking for transitions, the
state machine first looks in the most deeply neative state(s), i.e., in the atomic state(s).
If no transitions match in the atomic state, ttegestmachine will look in its parent state, then
in the parent's parent, etc. Thus transitions iceator states serve as defaults that will be
taken if no transition matches in a descendang¢ stiho transition matches in any state, the
event is discarded.

DIRHA_D5.1_20130220 25

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Parallel States

The <parallel> element represents a state whosdrehiexecute in parallel. Like <state>, the
<parallel> element contains <onentry>, <onexit¥arsition>, and <state> or <parallel>
children. However, the semantics of <parallel>iffedent. When a <state> is active, exactly
one of its children is active. When a <paralleleneént is activeall of its children are active

at the same time. Specifically, when the state mmachnters the parent <parallel> state, it
also entergach child state. The children states execute in paradlthe sense that any event
that is processed is processed in each child istd¢pendently, and each child state may take
a different transition in response to the everdiuiding ignoring it.

Transitionswithin each individual child element operate normally.wdger whenever a
transition is taken with a targetitside the <parallel> element, the <parallel> element alhd
of its child elements are exited and the correspandonexit> handlers are executed. The
handlers for the child elements execute first, @cwiment order, followed by those of the
parent <parallel> element, followed by an actiopression in the <transition> element, and
then the <onentry> handlers in the "target" state.

On the other hand a <parallel> element is exiteahd only if all of its child states are in a
final state, as illustrated in the following exampparallel state 'Par' has two children S1 and
S2. Suppose a transition takes S1's child S12 t@sgat. Upon this transition, the state
machine, in addition to entering S1 and S12, w8baenter S1 parallel sibling S2 and its
initial state S21. Once the transition has beeertalkar, S1, S2, S12, and S2Ini will all be
active. If event 'el' occurs, it will cause Sl1aramsition to S1Fin, and S2Ini to transition to
S22. At this point, S1 is in a final state, butiS2till active. Now suppose event 'e2' occurs.
This will cause S22 to transition to S2Fin. Nowjcg all of Par children are now in final
states the entire Par region is exited.

<parallel id="Par">
<transition event="evtent1" target="someOtherSt ate"/>
<state id="S1" initial="S1Ini">
<state id="S1Ini">
<transition event="e4" target="S12"/>
</state>
<state id="S12">
<transition event="el" target="S1Final" />
</state>
<final id="S1Fin"/>
</state>
<state id="S2" initial="S2Ini">
<state id=S2Ini">
<transition event="el" target="S22"/>
</state>
<state id="S22">
<transition event="e2" target="S2Fin/>
</state>
<final id="S2Fin"/>
</state>
</parallel>

Note that the semantics of the <parallel> does ntieainit must be implemented via multiple
threads or truly concurrent processing: the childoé <parallel> execute in parallel in the

DIRHA_D5.1_20130220 26

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DTRHA

sense that they are all simultaneously active auth ®@ne independently selects transitions
for any event that is received. Hence, the paralhdidren process the event in a defined,
serial (i.e. document) order, so no conflicts @eraonditions can occur.

Initial States

In the presence of compound states, transitionsonger simply move from the current
active state to a new active state, but from ohefsactive states to another. If the target of a
transition is an atomic state, the state machirkenter not only the atomic state, but also
any of its ancestor states that are not alreadyeadConversely, a transition may take a
compound state as its target; in such a case otfeeafompound state's children must also
become active, but the transition does not spedifigh one. In this case we look at the target
state's <initial> child that specifies the stati$ault initial state, which is, the child state to
enter if the transition does not specify one. lfg tlefault initial state is itself compound, the
state machine will also enter its default initildte, and so on recursively until it reaches an
atomic state). The presence of default initialestgirovides a form of encapsulation, since a
transition may select a compound state as its tamgbout knowing its internal substate
structure.

The default initial state of a compound state miap &e specified via the ‘initial' attribute.
The only difference between the <initial> elememd #e 'initial’ attribute is that the <initial>
element contains a <transition> element which matyiin contain executable content which
will be executed before the default state is eutelfethe 'initial’ attribute is specified instead,
the specified state will be entered, but no exdtataontent will be executed. (If neither the
<initial> child nor the 'initial' element is speeidl, the default initial state is the first child
state in document order). As an example, supp@geptrent state S contains child states S1
and S2 in that order. If S specifies S1 as its ulefaitial state via the 'initial' attribute (or
fails to specify any initial state), then any triéiog that specifies S as its target will result in
the state machine entering S1 as well as S. IrcHss, the result is exactly the same as if the
transition had taken S1 as its target. If, on tteohand, S specifies S1 as its default initial
state via an <initial> element containing a <traosp with S1 as its target, the <transition>
can contain executable content which will execugéote the default entry into S1. In this
case, there is a difference between a transitiantékes S as its target and one that takes S1
as its target. In the former case, but not in tgef, the executable content inside the
<initial> transition will be executed.

History States

A compound state may also have history states ddram <history> allows achieving
pause and resume semantics in compound statese likéostate machine exits a compound
state, it records the state's active descendantheofstate. If the 'type' attribute of the
<history> state is set to "deep”, the state mackmnees the state's full active descendant
configuration, down to the atomic descendant(s):tyibe' is set to "shallow", the state
machine remembers only which immediate child waiv@cAfter that, if a transition takes a
<history> child of the state as its target, thetestamachine re-enters not only the parent
compound state but also the state(s) in the samefigaration. Thus a transition with a deep
history state as its target returns to exactly whbe state was when it was last exited, while
a transition with a shallow history state as adarg-enters the previously active child state,
but will enter the default initial state of the Ichfif the child is itself compound.)

DIRHA_D5.1_20130220 27

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

Transitions

As anticipated in the previous sections, transgi@low to leave one state (including
compound ones) and enter another one: in casdrahsition located in a compound state,
the 'type' attribute is significant.

The behaviour of a transition with 'type' of "extal’ (the default) is defined in terms of the
transition's source state (i.e. the state contgithie transition), the transition's target state(s)
and theLeast Common Compound Ancestor (LCCA) of the source and target states (the
LCCA of 2 states is the closest compound state ihain ancestor of both the states,
including top level <mia_xml> tag in case no comnamcestor is found).

When a transition is taken, the state machine ®iik all active states that are proper
descendants of the LCCA, starting with the innetmase(s) and working up to the
immediate descendant(s) of the LCCA. Then the stetehine enters the target state(s), plus
any states that are between it and the LCCA, stanvith the outermost one (i.e., the
immediate descendant of the LCCA) and working dbovilhe target state(s).

As states are exited, their <onexit> handlers aeesw@ed. Then the executable content in the
transition is executed, followed by the <onentrgndilers of the states that are entered. If the
target state(s) of the transition is not atomie, skate machine will enter their default initial
states recursively until it reaches an atomic &ate

In the example below, assume that state s11 ieastien event ‘e’ occurs. The source of the
transition is state sl, its target is state s2il, tae LCCA is state S. When the transition is
taken, first state S11 is exited, then state sy #iate s2 is entered, then state s21. Note that
the LCCA S is neither entered nor exited.

<state id="S" initial="s1">
<state id="s1" initial="s11">
<onexit>
<log expr=""leaving s1"/>
</onexit>
<state id="s11">
<onexit>
<log expr=""leaving s11"/>
</onexit>
</state>
<transition event=
<log expr=""executing transition"/>
</transition>
</state>
<state id="s2" initial="s21">
<state id="s21">
<onentry>
<log expr=""entering s21"/>
</onentry>
</state>
<onentry>
<log expr=""entering s2"/>
</onentry>
</state>
<onentry>
<log expr=""entering S"/>
<onentry>

DIRHA_D5.1_20130220 28

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

<onexit>
<log expr=""leaving S"'/>
<onexit>
</state>

The sequence of execution of executable conteritbevi

leaving s11; leaving s1; executing transition; ente ring s2; entering s21

The behaviour of transitions with 'type' of "intathis identical, except in the case of a

transition whose source state is a compound statevhose target(s) is a descendant of the
source. In such a case, an internal transition watl exit and re-enter its source state, while
an external one will, as shown in the example below

<state id="S" initial="s1">
<state id="s1" initial="s11">
<onentry>
<log expr="entering S1"/>
</onentry>
<onexit>
<log expr=""leaving s1"/>
</onexit>
<state id="s11">
<onentry>
<log expr="entering s11"/>
</onentry>
<onexit>
<log expr=""leaving s11"/>
</onexit>
</state>
<transition event="e" target="s11" type="inter nal">
<log expr=""executing transition"/>
</transition>
</state>

The sequence of execution of executable conteritbavi

leaving s11; executing transition; entering s11
If transition type was “excternal (default) the seqce of execution of was:

leaving s11; leaving s1; executing transition; ente ring s1; entering s11

If the 'target’ on a <transition> is omitted, ttika value of ‘type' does not have any effect and
taking the transition does not change the statéigioation but does invoke the executable
content that is included in the transition. Notattthis is different from a <transition> whose
'target’ is its source state. In such a case ttte s exited and reentered, triggering execution
of its <onentry> and <onexit> executable conteobading to the type of the transition.

As data can be sent along with events, Transitemm store such data into the datamodel,
through the <param> tag; fore ach item of dataivedealong with the event, all the ones
dealt with in the <param> tags are stored in tHative data tags; received data not

DIRHA_D5.1_20130220 29

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DTRHA

mentioned in any <param> tag are just discardkdwiise, any <param> tag mentioned data
not received in the event is just neglected.

4.2 The Core Constructs of the MIA-XML language

In the following, a brief introduction the tagstbe MIA-XML language is reported; see
Appendix 1 for an exhaustive definition of each andry tag.

<mia_xml>

The top-level wrapper element, carrying versionoinfation. The actual state machine
consists of its children. Note that only one of thddren is active at any one time.

<state>

Holds the representation of a state.

<parallel>

The <parallel> element encapsulates a set of dtdtes which are simultaneously active
when the parent element is active.

<transition>

Transitions between states are triggered by ewmmionditioned via guard conditions. They
may contain executable content, which is executeeinwhe transition is taken.

<initial>

This element represents the default initial stareaf complex <state> element (i.e. one one
containing child <state> or <parallel> elements.

<final>

This element represents one final state for a cexpétate> element (i.e. one one containing
child <state> or <parallel> elements. When theestaachine reaches one <final> child of an
<mia_xml> element, it terminates execution.

<onentry>

A wrapper element containing executable contebetexecuted when the state is entered.

<onexit>
A wrapper element containing executable contebetexecuted when the state is exited.

<history>

The <history> pseudo-state allows allows a statehmna to remember its state configuration.
A <transition> taking the <history> state as iteged will revert the state machine to this
recorded configuration.

DIRHA_D5.1_20130220 30

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

4.3 Executable Content in the MIA-XML language

Executable content allows the State Machine tohdlags, such as modify its data model
and/or interact with external entities. Executallentent consists of actions that are
performed as part of taking transitions. In pattcu executable content occurs inside
<onentry> and <onexit> elements as well as insidmsitions. Notice that targetless
transitions may contain executable content as w@h; would allow one state to do things
simply because it is active. When the state machakes a transition, it executes the
<onexit> executable content in the states it isviteg followed by the content in the
transition, followed by the <onentry> content il tates it is entering.

Wherever executable content is permitted, an aryitnumber of elements may occur. Such
a sequence of elements of executable content lsdcalblock. For example, if transition t
takes the state machine from atomic state S1 tmiatstate S2, there are three blocks of
executable content executed: the one in the <onéahdler of S1, the one inside T, and the
one inside the <onentry> handler of S2. The MIA-XMkecutor executes the elements of a
block in document order. If the processing of aenmednt causes an error to be raised, the
exeecutostops processing the remaining elements of the blocklewthe execution of other
blocks of executable content is not affected.

<| 0g>

<log> allows an application to generate a logging debug message useful in the
development of the State Machine at applicativellev

<assign>

The <assign> element is used to modify the dataeiod

<raise>

The <raise> element raises an event in the cuivBAtXML session. Note that the event
will not be processed until the current block okextable content has completed and all
events that are already in the internal event ghewe been processed. For example, suppose
the <raise> element occurs first in the <onentrgadier of state S followed by executable
content elements ecl and ec2. If event el is gireathe internal event queue when S is
entered, the event generated by <raise> will ngirbeessed until ecl and ec2 have finished
execution and el has been processed.

<if> <dsaf> <ese>

<if> is a container for conditionally executed ektarts.

<elseif> is an empty element that partitions theteot of an <if>, and provides a condition
that determines whether the partition is executed.

<else> is an empty element that partitions the exgndf an <if>. It is equivalent to an
<elseif> with a "cond" that always evaluates tetru

The following example shows the usage of the ffeéland else tags:

DIRHA_D5.1_20130220 31

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

<if cond="cond1">
<!I-- selected when "cond1" is true -->
<elseif cond="cond2"/>

<!-- selected when "cond1" is false and "cond2" i s true -->
<elseif cond="cond3"/>
<!-- selected when "cond1" and "cond2" are false and "cond3" is true -->
<else/>
<!-- selected when "cond1", "cond2", and "cond3" are false -->
<[if>
<foreach>

The <foreach> element allows a State Chart appmicdad iterate through a collection in the
data model and to execute the actions containgdnaittfor each item in the collection.

The MIA-XML executor acts as if it has made a shallcopy of the collection produced by
the evaluation of 'array’ (modifications to thelediion during the execution of <foreach>
shall affect the iteration behaviour). The execuarts with the first item in the collection
and proceeds to the last item in the iteration rotlat is defined for the collection. For each
item in turn, the processor assigns it to the itemable. After making the assignment, the
executor evaluates its child executable conterihdh proceeds to the next item in iteration
order. If the evaluation of any child element cauae error, the processor ceases execution
of the <foreach> element and the block that costain Note that there is no break
functionality to interrupt <foreach>, however, ugitargetless and/or eventless transitions
sophisticated iterative behavior can be achieved.

4.4 Data modellingin the MIA-XML language

The Data Model offers the capability of storingadang, and modifying a set of data that is
internal to the state machine. In addition to timelarlying data structure, the data model
defines a set of expressions. These expressionssarketo refer to specific locations in the
data model, to compute values to assign to thosatitms, and to evaluate Boolean
conditions. Finally, the data model includes acdetystem variables which are automatically
maintained by the MIA-XML executor.

The data model is defined via the <datamodel> elénvehich contains zero or more <data>
elements, each of which defines a single data eleare its type (i.e. number, the default, or
string) and optionally assigns an initial valueitoValues can then be updated via the
<assign> element. The<content:> and <param> elentamt be used to incorporate data into
communications with external entities.

Data binding and scoping

There is a globally visible data model for the entitate machine. Specifically, the MIA-
XML executor allows any data element of that datdeh®o be accessed from any state.

On the other hand, each and every <state> or dplralan have its own <datamodel> to
encapsulate data for its own and its substatesy pticate datamodels are initialized with
default values (if any) every time their owningatst- or <parallel> is entered.

The initial value specified by 'expr' is assignedite data element even if the element already
has a non-null value every time the owning stanigred.

DIRHA_D5.1_20130220 32

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Ordering dependencies <data> elements are posaiide follow the document order.
Suppose, for example, that the declaration of eh¢rfee' precedes the declaration of element
"b" in a document. It can be assumed that "a" bellinstantiated and have a value when the
declaration of "b" is executed. Therefore the "&xpr'b" can safely reference the value of
"a". Note that the data model can only modifieddagsign>, <param> and <finalize>. In
particular, no means is defined for external esgito modify the data model. In this sense the
data model is local to the MIA-XML execution

<datamodel>

<datamodel> is a wrapper element which encapsutatgsiumber of <data> elements, each
of which defines a single data object.

<data>

The <data> element is used to declare and popptatens of the datamodel.

<content>

A container element holding data to be passed tex&rnal service: by means of <send> or
<invoke> tags. When evaluating the <content> elgmiérthe 'expr' value expression is
present it is evaluated first and the result i®ta&s the <content> element. If the evaluation
of 'expr' produces an error, the empty string exduss the value of the <content> element.

<param>

The <param> tag provides a general way of idemiifya key and a dynamically calculated
value which can be passed to an external servioectuded in an event. It can only used to
assign data received from an external servicettoidahe datamodel.

Expressions

Expressions are used to produce values to be nsaskigning variables, i.e. data items. As
data items are either numerical or string typedirecexpressions.

For numerical expressions, the usual operatorsti*¢() have their usual meaning and any
arbitrary expression can be built; the followingltun constants and function are available:
Pi, e, exp(x), log(x), log10(x), sqrt(x), floor(xxeil(x), abs(x), rand(), rand100(), fac(x),
int(x), dec(x), sin(x), cos(x), tan(x), aSin(x), @gx), aTan(x); the Active(x) function is also
provided, which takes a state ID as its argumedtraturns the time by which the state is
active since its last activation, if its argumesbmitted, the current state is considered. Such
a function is useful to implement timers.

For string expressions, operator + is availablethwits usual meaning of “string
concatenation”; the builtin function substr(str,jp@s) is available to extract a substring from
a string starting after the pbsharacter of the string, for a length of len cbtees, or less if
the end of string comes first.

The type of the expression is provided by the typthe variable to assign; in case variables
(or constants) of the opposite type are used, tgopeersion is applied just after accessing it,
so:

DIRHA_D5.1_20130220 33

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

1. if a string typed variable is accessed in a nunelx@ression its length in characters is
used instead

2. if a number variable is accessed in a string végjaits character representation is
used instead.

In any case evaluation of expressions do not m®gide effects.

Conditions

Conditions are used inside the 'cond' attributet@dnsition>, <if> and <elseif>.

They are in the form of Boolean expressions comigiine basic Boolean term

[notOp[{lhs pred rhs}, with optional notOp is ~ arlds and rhs expressions and pred
belonging to { ==, =, >, <, >=, <=} (actually: 53=, <, > ≥ ≤) combined at
any complexity through the &&, ||, ™ operatorsct(mlly &&, ||, ~)and braces,
used to specify precedence at the boolean levebrder to distinguish them from the
ordinary braces, used with arithmetic meaning m#id and rhs expressions.

By default the 6 predicates operate with numeritab®ur, i.e. a > b evaluates to true if a is
greater than b; however they can also be explicgfjuested to work with string behaviour
adding a $ (dollar sign) on the side that has ke tae string behaviour, i.e. a $>$ b is true if
a, taken as string comes after b in alphabetical ordering, wittaken as a string; in case a or

b variables were not strings they are convertedgusie rules listed in the previous section,
about Expressions.

If the evaluation of a condition causes an errbe false value is returned. The 'In(x)’
predicate is supported, which takes a state IDisasrgument and returns true if the state
machine is in that state. This predicate allowsdimation among parallel regions.

Conditional expressions do not produce side effects

L ocation Expressions

Location expressions are used to refer to a vaialthin the datamodel. Such expressions
are of the type: a[sel]/....... /b[sel].c[sel] wheresan attribute of b and b is a data item under
a and [sel] is a selection condition, i.e. id="fo&very occurrence of Location Expressions
with exception to the “foreach” is evaluated attguarse time to speed up execution time; for
this reason it must evaluate to one and only @ma ih one of the active datamodels, starting
from the innermost one. It is error if it evaluate® or > 1 elements.

In case of “foreach” the Location Expression wil bvaluated at run time and can contain
any number of elements, including O elements.

Errorsin Expressions

Syntactic errors are are captured at compile timek flagged; such errors stop the further
execution of the state machine.

In case a run time error arises the result is thety string for string typed expressions and 0-
False for number type expressions.

System Variables

DIRHA_D5.1_20130220 34

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

A protected portion of the data model is kept, tores information that can be useful to
applications. We refer to the items in this spepat of the data model as 'system variables'.
Variable names beginning with '_' are reservedsf@tem use. No ids beginning with ' ' in
the <data> element are allowed. The following J\aga are supported in the root datamodel:

* _sessionid. This is a system-generated id for the current MML session; such a
variable is valid and constant until the sessiomieates.

e _name. This variable is bound at load time to the vadfieche 'name’ attribute of the
<mia_xml> element. such a variable is valid andstamt until the session terminates.

4.5 External Communication in the MIA-XML language

The External Communications capability allows anANKML session to send and receive
events from external entities, and to invoke exkservices.

1. The <send> tag provides the capability to deliveends and data to any destination,
including other MIA-XML sessions; the 'delay’ dtuiie allows for deferred event
delivery and can be used to implement a timer. avalable transport is HTTP over
TCP/IP. Events are sent asynchronously, withoutstlade machine wait for response;
however a confirmation is waited for by the executnd if such a wait times out a
warinig message is generated.

2. The <invoke> tag offers a more tightly coupled foofncommunication, specifically the
ability to trigger an external service, pass datat tand receive data from it hrough its
child <finalize>. The semantics of the <invoke>x@npatible to an HTTP request where
the invoking party waits synchronously for the mgean of the result from the invoked
party. The <invoke> element is executed after tage's <onentry> element and causes
an instance of the external service to be credthd.<param> and <content> elements
can be used to pass data to the service. The kiratode is used to normalize the form
of the returned data and to update the data moefelrd the transitions' "event” and
"cond" clauses are evaluated. When parallel stemeske the same external service
concurrently, separate instances of the externaliceewill be started. They can be
distinguished by ids which are associated with th8milarly, the ids contained in the
events returned from the external services candeel o determine which events are
responses to which invocation.

<send>

<send> is used to send events and data to exteysms, including external MIA-XML
executors, or to raise events in the current MIA{IX8&ssion.

The target of the <send> operation specifies tis¢iriion of the event. The target is defined
by either the 'target’ or the 'targetexpr' attebut

The type of the <send> operation specifies the atethat the MIA-XML executor uses to
deliver the message to its target. Either the "tgp¢he 'typeexpr' attribute to define the type
(not both at the same time). At the moment the snlyported method is HTTP-POST,; the
default type/typeexpr value is “xml”; in the futuijson” will also be allowed.

M essage Content

DIRHA_D5.1_20130220 35

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

The sending MIA-XML executor does not alter the teo of the <send> and includes it in
the message that it sends to the destination sgebaif the target attribute of <send>.

In the following, an example POST payload generated sent out of the following MIA-

XML fragment:
<send id=" recogniseRequest" target="http://receive r.newamuser.it:8082/asr"
type="xml" event=" recogniseRequest">
<param name="grammar" expr=""grammar_complete.xml’' " type="string"/>
<param name="grammar" expr=""grammar_cancel.xm|" type="string"/>
</send>

POST payload Received at receiver.newamuser.iosifgort 8082:

<event name="stopRecognition" sendld="stopRecogniti on">
<payload>
<parameter name="grammar" expr=""grammar_comple te.xml" type="string"/>
<parameter name="grammar" expr=""grammar_cancel. xml™ type="string"/>
</payload>
</event>

In the following, a possible response issued byréoeiving site (positive answer, in case it
was awaiting such a message) (200 OK header):

<eventSendAcknowledge
version="1.0" eventName="recognisedkey"
stateName="RecKeyword_CompleteCommand"
stateMachineFile="./SM/dialogue_main_7_EN"/>

Note that the absence of any error events doesneain that the event was successfully
delivered to its target, but only that the executas able to dispatch it.

<invoke>
The <invoke element is used to create and refantmstance of an external service.

The <invoke> tag is used to execute a child prooagbe same processing node where the
MIA-XML executor runs; option can be passed to¢h#éd process via the <param> tag; the
same <param> tag can take returned values backhatState Machine (see below the
<finalize> tag).

If the 'name’ of a <param> element in the <invokeatches the 'id' of a <data> element in a
<datamodel>, the value of the <param> element vélket to the value of the data element
when passed to the invoked service. If there iglata in datamodels matching the param
name that <param> element will not be passed tsehace.

If the invoking state machine exits the state coimg the invocation before the invoked
service terminates, it cancels the invoked sesabamting the invoked service.
<finalize>

The <finalize> element enables an invoking sessiampdate its data model with data when
it terminates its execution. <finalize> containg@xtable content that is executed whenever

DIRHA_D5.1_20130220 36

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

the external service terminates its execution. Thigtent is applied before the system looks
for transitions that match the event. In the cdsgacallel states, only the finalize code in the
original invoking state is executed.

4.6 Release 1.0 of the MIA-XML executor

A first version of the MIA-XML executor has been plteamented and tested; this will be
referred to as release 1.0; the whole MIA-XML laaga is only partially supported; however
its actual coverage is large enough to run the BitRHA prototype; Appendix 1 contains the
reference manual for the complete designed languaags identified as “not yet
implemented” will be added in the coming monthgshet all the tags reported in Appendix 1
will be implemented by the end of the project. Reke1.0 already implements parallelism.

| mplementation details

The MIA-XML executor has been implemented as a @fggram for maximal execution
efficiency, minimal memory footprint and maximal rfability to different environments,
including mobile and embedded systems and unimgerduoperability.

A specialized regression test-suite has been deeéjdhe following pictures report the most
common state machine structures, captured intofgpéest cases, starting from the simple
ones (pure sequential ones) to more complex oniis,parallelism (with reference to the
following picture, the objects with yellow backgralicontain parallel threads).

The current Release 1.0 of the MIA-XML executoraisle to handle fairly large State
Machines (up to 65k tags per state machine); soitialievaluations have been carried out in
order to assess its efficiency in terms of two agthnal performance figures of evaluation
speed and communication speed, measured on a SRjle computer running the MS-

Windows XP operating system; there are no knowrclhmarks for this kind of software;

however such performances exceed any reasonablef sequirements for human to

machine interfaces.

Example Evaluation speed (states/S) Communication Speed (events/S)

Sequentiallg 7100| n.a. (there is no ext. communicatign)
Parallel3 830Q n.a. (there is no ext. communicatign)
Circular n.a. (there is only communication 530

DIRHA_D5.1_20130220 37

© DIRHA Consortium 2012-2014

DIRHA

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

Figure 4-1 — examples of Sequential Test cases

DIRHA_D5.1_20130220

38

© DIRHA Consortium 2012-2014

DIRHA

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

Figure 4-2: examples of Parallel Test cases

DIRHA_D5.1_20130220

39

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

5. Houset+User Profile and Houset+tUser Sate

Defining and keeping up-to-date House Profile armlsé¢ State, as well as User Profile
allows implementing more effective dialogues, aythepresent knowledge that can be used
a-priori to direct dialogues, instead of askingulser or deriving from the context; within the
DIRHA project such information will be exploited amich as possible; keeping advantage of
the concurrent nature of the dialog State Machities House State within the Dialog
Manager is always kept in-sync with the real hotls®ugh the House Automation system.

The House Profile is a data structure abstractimg @ncapsulating all the unique items
contained into the specific house managed by orso@uie instance; encapsulating such
information into a single place will be of greatihén adapting the dialogue to a variety of
different Houses where the DIRHA system would tsdlted.

The User Profile is a data structure with the sahpectives of the House Profile, but

regarding each and every user of a given hougefairly smaller than the House Profile; for

this reason it has been associated with the HorafdeP from this point on the term House

Profile (and hence House State) will be used terred both House and User Profiles (and
States).

The House State is an augmentation to the HoudéeRmolding the specific state variable(s)

for each and every object in the House Profile wehsiate is known, at least partially.

In order to make the dialogue independent enougim fthe specific house (and also the
grammars, understanding and prompts), a Housel@wfbeing defined (according to XML

syntax).

5.1 TheHouse+User Profile

In the following, an example of House Profile dataicture is reported; a formal definition
of the data structure is reported later in thigisac

<house name="ITEA flat” address="192.168.1.2">
<room name="kitchen” id="R1" synonyms="food; cook ing;">
<window name="small” id="W1” synonyms="north” ¢ onfirm="Y" default="Y"/>

<window name="big” id="W2" synonyms="garden” co
<blinds name="shutter” id="S1” synonyms="garden
<door name="entrance” id="D1" synonyms="hallway
<light name="chandelier”, id="L1” synonyms="mai
<light name="neon” id="L2” synonyms="little”/>
<temperature name=" heater” id="H1"” synonyms="t
<appliance name="owen" type="owen” id="A1" syno
<media name="TV" id="TV1"” synonyms=""/>
<telephone name="phone” id="T1"” synonyms="" mod
</room>

<room name="bathroom” id="R2" synonyms="washroom);

”

<window name="garden”, id="W3” synonyms="" conf
<door name=" entrance”, id="D2" synonyms="hallw
<light name="hanging”, id="L3” synonyms="main”
<light name="mirror”, id="L4” synonyms="little”
<temperature name=" heater” id="H2" synonyms="t

</room>

<room name="bedroom” id="R3"” synonyms="bed; sleep
<window name="south”, id="W4” synonyms=""/>
<blinds name="shutter” id="S2" synonyms=""/>

nfirm="Y"/>

"/>

* confirm="Y"/>
n” default="Y"/>

hermostat”/>
nyms=""/>

e="handsfree"/>

restroom; ...">
irm="Y"/>

ay” confirm="Y"/>
default="Y"/>

/>

hermostat”/>

: s

DIRHA_D5.1_20130220

40

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

<door name="entrance”, id="D3" synonyms="hallwa y'I>
<light name="chandelier”, id="L5” synonyms="mai n” default="Y"/>
<light name="abat-jour”, id="L6" synonyms="litt le"/>
<temperature name=" heater” id="H3" synonyms="t hermostat’/>
<media="TV”", id="TV2” synonyms=""/>
<telephone name="phone” id="T2" synonyms="" mod e="handsfree"/>
</room>
<room name="entrance” id="R4” synonyms="hallway">
<door name="front”, id="D4” synonyms="front doo r" confirm="Y"”
default="Y"/>
<door name="kitchen”, id="D1"” synonyms="" confi rm="Y"/>
<door name="bathroom”, id="D2" synonyms="" conf irm="Y"/>
<door name="bedroom”, id="D3"” synonyms="" confi rm="Y"/>
<light name="chandelier”, id="L7"” synonyms="mai n"/>
<temperature name=" heater” id="H4"” synonyms="t hermostat”/>
</room>

<user name="John” id="U1" synonyms="Johnny”>
<preference room="R1">
<set item="S1" to="s:100"/>
<set item="T1" to="mode:headset"/>
</preference>
<preference room="R3">
<set item="L6" to="s:100"/>
</preference>
</user>
<user name=“Mary” id="U2" synonyms="">
<preference room="R1">
<set item="S1" to="s:0"/>
</preference>
<preference room="R3">
<set item="TV2" to="vol:50"/>
</preference>
</user>
</house>

The following remarks can be done with respech&above example:

1. Some items have the attribute “confirm”: for theses where it is defined and its
value is “Y” the dialogue requests specific confation to execute the command (i.e.
“do you really want to open the front door?”).

2. In case where more than one item of the same @gsswithin the same room, at
most one of them can have the attribute “defawt"ts “Y”; in this case, when a user
utterance is received for that type and that robendefault item is picked without
asking more questions.

3. ltems have a mandatory “id” attribute: this is tkey known by the House
Automation system.
Some grammars could be built dynamically out of Hheuse+User Profile to help the
recognition and understanding phases through a mpeeific data set; this information,
extracted from the House State could be part ad@@nded context passed to the ASR.

5.2 TheHouset+User State

The House Profile is the ideal place to host tladodi abstraction of the state of the various
resources in the house and its inhabitants (ieeusiers).

The “House State” is an augmented version of theude¢ profile”, holding the current state
of each and every resource whose state is known.

DIRHA_D5.1_20130220 41

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,

DiRHA]

dialogue management and feedback to the user

The House profile is constantly updated in an edenen way as soon a change of state is
communicated by either the House Automation sysiétmy the other parallel thread in the
Dialog State Machine. In the following, the prevsoexample of House State is reported (in

bold face) with added the state information.

<house name="ITEA flat” address="192.168.1.2"
state="users:1; temp:20;” >
<room name="kitchen” id="R1" synonyms="food; cook
<window name="small” id="W1” synonyms="north” ¢

state="s:50;" >
<window name="big” id="W2" synonyms="garden” co
state="s:100;" />

<blinds name="shutter” id="S1” synonyms="garden

<door name="entrance” id="D1" synonyms="hallway

<light name="chandelier”, id="L1” synonyms="mai
state="s:100;" />

<light name="neon” id="L2” synonyms="little”

<temperature name=" heater” id="H1"” synonyms="t

<appliance name="owen" type="owen” id="A1" syno

t0go:1800;” />
<media name="TV" id="TV1” synonyms=""

ing;">
onfirm="Y" default="Y"

nfirm="y"
" state="s:100;” />
" confirm="Y" state="s:0;” >
n” default="y"
state="s:0;" />
hermostat” state="s:21;” >

nyms="" state="s:100;temp:180;

state="s:100; prog:3; vol:40;" />

<telephone name="phone” id="T1"” synonyms="" mod e="handsfree” state="Off;" 1>
</room>
<room name="bathroom” id="R2"” synonyms="washroom; restroom; ...">
<window name="garden”, id="W3" synonyms="" conf irm="Y" state="s:10;" />
<door name=" entrance”, id="D2"” synonyms="hallw ay” confirm="Y" state="s:0;" 1>
<light name="hanging”, id="L3"” synonyms="main” default="Y" state="s:0;" >
<light name="mirror”, id="L4” synonyms="little” state="s:0;" />
<temperature name=" heater” id="H2" synonyms="t hermostat” state="s:22;" >
</room>
<room name="bedroom” id="R3" synonyms="bed; sleep ;>
<window name="south”, id="W4” synonyms="" state="s:0;" />
<blinds name="shutter” id="S2” synonyms="" state="s:0;" />
<door name="entrance”, id="D3"” synonyms="hallwa y" state="s:0;" />
<light name="chandelier”, id="L5" synonyms="mai n” default="Y" state="s:0;" />
<light name="abat-jour”, id="L6" synonyms="1itt le” state="s:20;" />
<temperature name=" heater” id="H3" synonyms="t hermostat” state="s:18;" >
<media="TV", id="TV2” synonyms="" state="s:0; prog:3; vol:40;” />
<telephone name="phone” id="T2" synonyms="" mod e="handsfree” state="0Off;" 1>

</room>
<room name="entrance” id="R4” synonyms="hallway">
<door name="front”, id="D4” synonyms="front doo
state="s:0;" />

r" confirm="Y" default="Y"

<door name="kitchen”, id="D1" synonyms="" confi rm="Y" state="s:100;" />
<door name="bathroom”, id="D2" synonyms="" conf irm="Y" state="s:0;” >
<door name="bedroom”, id="D3"” synonyms="" confi rm="Y" state="s:0;" >
<light name="chandelier”, id="L7” synonyms="mai n” state="s:0;” >
<temperature name="heater” id="H4" synonyms="t hermostat” state="s:20;” >
</room>
<user name="John” id="U1" synonyms="Johnny” state="room:R1;RmConf:50" >
<preference room="R1">
<set item="S1" t0o="s:100;"/>
<set item="T1" to="mode:headset"/>
</preference>
<preference room="R3">
<set item="L6" to="s:100;"/>
</preference>
</user>
<user name="Mary” id="U2” synonyms="" state="room:--;RmConf:100" >

<preference room="R1">
<set item="S1" to="s:0;"/>
</preference>

DIRHA_D5.1_20130220

42

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DiRHA]

<preference room="R3">
<set item="TV2" to="vol:50;"/>
</preference>
</user>
</house>

In the following a formal definition of the Housesér Profile and State is reported, as DTD.

<?xml version="1.0" encoding="utf-8"?>
<IELEMENT House (room | user)+>
<IATTLIST House
name CDATA #REQUIRED
address CDATA #REQUIRED
state CDATA #REQUIRED >
<IELEMENT room (door | window | blinds | light | t emperature | appliance | media |
telephone)*>
<IATTLIST room
name CDATA #REQUIRED
id CDATA #REQUIRED
synonims CDATA #IMPLIED >
<IELEMENT door >
<IATTLIST door
name CDATA #REQUIRED
id CDATA #REQUIRED
synonims CDATA #IMPLIED
confirm (yes|no) "no"
default (yes|no) "no"
state CDATA #IMPLIED >
<IELEMENT window >
<IATTLIST window <!-- same as door --> >
<IELEMENT blinds >
<IATTLIST blinds <!-- same as door --> >
<IELEMENT light >
<IATTLIST light <!-- same as door --> >
<IELEMENT temperature >
<IATTLIST temperature <!-- same as door --> >
<IELEMENT appliance >
<IATTLIST appliance <!-- same as door --> >
<IELEMENT media >
<IATTLIST media <!-- same as door --> >
<IELEMENT telephone>
<IATTLIST telephone
name CDATA #REQUIRED
id CDATA #REQUIRED
synonims CDATA #IMPLIED
mode CDATA #IMPLIED
confirm (yes|no) "no"
default (yes|no) "no"
state CDATA #IMPLIED >
<IELEMENT user (preference)*>
<IATTLIST user
name CDATA #REQUIRED
id CDATA #REQUIRED
state CDATA #IMPLIED >
<IELEMENT preferences >
<IATTLIST preferences
room CDATA #REQUIRED >
<IELEMENT set >
<IATTLIST set
item CDATA #REQUIRED
to CDATA #REQUIRED >

DIRHA_D5.1_20130220 43

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

5.3 Synchronization among physical resour ces and House State

The real house resources (i.e. lights, ...) will beler control of the Home Automation
system, whose purpose is to control and observedtate; the wall switches, as well as other
interaction devices (e.g. centralized console, whergraphic interface on a touch screen
allows the visualization and change of the statthefresources, or remote control) send their
commands to the House Automation system whichyrim ¢ontrols the house resource.

The House Automation system will be interfacedite Dialog Manager in a bidirectional
way:

1. from House Automation system to Dialog Manageretothe DM update its House
State; such events will be sent as soon as the stat house resource changes; in a
starting phase the House Automation system shatl sestream of events to let the
DM change the state of all the resources fromrifiai (i.e. off) position.

2. from Dialog Manager to House Automation systemexecute a spoken command
provided to the DIRHA system.

Within the Dialog Manager the House+User State bgllupdated according to the following
events:

1. actions over house resources done through the Hausenation system (i.e. user
turned on a light using the wall switch, or the sale)

2. actions over house resources done through the ddialManager: this is the case of
spoken commands; in such a case the Dialog Manaliessue a command event to
the House Automation system, to request for theleeeaction. From the House
Management system point of view such kind of conusaare logically identical to
the ones coming from the wall switches and theratbatrol devices.

3. change in the state of Users (e.g. movement froenroom to another one) notified
to the Dialog Manager by other subsystems; for gtarthe position of one user
could be updated after each utterance providedthigasystem is able to recognize
the user from his/her voice and its position. Irchswa case one or more some
command events could be issued to the House Autoamsystem to request actions
specified in the user preferences (i.e. changdind Iposition when a specific user is
into the room).

DIRHA_D5.1_20130220 44

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

6. Integration of the CDM within the DIRHA environment

After the detailed discussion of the MIA-XML langg@and House state and Profiling, some
more insight can be added to what introduced i2 §Resign choices in the DIRHA Dialog
Management), concerning the integration of the Qoment Dialog Manager within the
specific ecosystem of the DIRHA project.

Figure 6-1 the target Dialog Manager ecosystem for the DIRHA project

Figure 6-2 typical message exchange among modules

DIRHA_D5.1_20130220 45

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Figure 6-1 reports the CDM and its ecosystem as designethéfinal prototype in DIRHA
(the oval hides all the signal processing algorghmbe developed and integrated within the
project).

Figure6-2 shows another view of the same modules, intioalavith a typical to the message
exchange sequence; notice the thick black bar, hwhepresents the group of several
concurrent dialogs managed simultaneously; evemthamged with ASR and Prompt
Generator carry the room tag along with the otltached data.

Roles of the various modulesin the interaction

The event nature of the exchange of messages atherglA-XML executor and the other
elements in its ecosystem does not pre-configuriehwtole (e.g. master or slave) will be
played by each element; this is decided accordirgpth specific case. In the following, the
role attribution for the main modules is reporteddach interaction.

1. Dialog Manager vs. ASR encapsulating most of tist o the DIRHA system, such as
the Speech Understanding, Source Localization, KgpeRecognition,): for this
interaction the Dialog Manager is master and th& ASslave: first the DM activates the
ASR recognition, against a specific recognition tegh and then the ASR returns a
recognition frame, with its fields filled with andnderstanding of the recognized
utterance; then the ASR is stopped.

This assumption is fairly straightforward, as tlséual context to be passed to the ASR is
dependent upon the state of the dialogue and thisvledge is kept by the Dialog
Manager; in case multiple utterances are expeatedifferent rooms, the ASR will
receive multiple activations with different roomsagnators.

The above statement does not imply that the Disliage Machine will be the sole place
where information about the state of the systestaosed: while this is the most natural
room for storing the state of the dialogue, and/eéasmplement also for other kinds of
data, information about details of the acoustimsce®r other, could be stored into other
modules of the system if this is more efficieneffective.

For the above reason the context information kgpthe Dialog State Machines and
passed to the ASR (and the other modules it entapsy has not been completely
identified; a complete list will be produced in tb@ming phases of the project, when the
capabilities and needs of all the encapsulated fesdull be clearer.

2. Prompt Generator: for this interaction the DialogrMger is master and the Prompt
Generator is slave; the DM activates the PrompteGear with a file name containing
the recorded message (or the text of the stringytthesize) if needed the Prompt
Generator could be stopped in the middle of theyiqalek of a previous message.
Prompts could be of three different kinds: (i) dyneally generated via TTS, out of the
text phrase; (ii) spoken by a professional spealkel recorded into a file; (iii) jingles,
stored into a file. While the choice of the kind mompt is transparent to the Dialog
Manager, it is good practice for the Dialog Statackine to send along with the event

DIRHA_D5.1_20130220 46

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

both the textual message to be synthesized inafaB&S and the file name in case a pre-
recorded message or jingle is chosen.

The choice of the prompt phrases is crucial to kk&duser to give his/her answer in the
expected way (i.e. aka “linguistic inductors”), kerto improve the overall accuracy of
the system.

3. Home Automation system: for this interaction theg Reer-to-Peer (i.e. they can both
send commands to each other): the DM will send cants to the Home Automation
system as soon a command has been received (afidnamhif requested to); on the
other hand, the Home Automation system will setiange of State of (some device in)
the House as soon as entities outside DIRHA produstate change; the House State
maintained by the Dialog State Machine will be upda accordingly to help
understanding future user commands.

Initial Development Ecosystem

While awaiting for the whole system to be completeth the to-be ASR + Speech
Understanding + Source Localization + Speaker Beition, a temporary development
ecosystem has been put in place; this will help to:

1. optimize and tune the Concurrent Dialog Manageallehging it with long iterative
stimuli with test State Machines

2. develop and optimize the Dialogue State Machines
3. develop and optimize the handcrafted Grammars
4. develop end optimize the Prompts

Figure6-3 reports this development environment.

Figure 6-3 Initial Development Ecosystem

DIRHA_D5.1_20130220 47

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

Figure 6-4 reports the ASR Emulator page, developed iagenpt/jquery; it is able to send
the ASR events as xml fragments sent in the paywdd&OST invocations to the CDM; the
same page, on the left hand side reports the esentdrom the CDM to start the recognition
according to the requested context.

Finally, Figure6-5 reports the simulator of the House Automatigstem, and is able to

show the current state of the house as set upébgi#tiogue. (only doors, windows and light
are shown, at the moment).

Figure 6-4 ASR Emulator

DIRHA_D5.1_20130220 48

© DIRHA Consortium 2012-2014

DIRHA

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

Figure 6-5 House State Display

DIRHA_D5.1_20130220

49

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

7. Design of the User Interface Dialogue Flow

This section discusses a dialog flow able to haadiabset of the house resources that will be
dealt with by the real DIRHA prototypes; its fummtalities are also limited. It has been
reported here to show through a concrete example the various modules interact with
each other to implement the desired behaviour.

However the User interface of the DIRHA prototypk 8 being developed evolving the
reported design; since the prototype is due by Mh@, design will be improved and
completed in the next few months. A specific deiame (D1.3) is planned to document it.

General guidelinesin the design of the dialogue

The DIRHA system will have an “always listening” RShowever, in order to avoid false
starts upon utterances not directed to it or confiaign TV or other sources, the ASR will be
directed to recognize against to a very specifiangnar or Language model, i.e. one
containing only a very specific “keyword”, not easybe misrecognized; after this initial turn
of dialog has passed, the real grammars or langoegkels are activated; at the end of the
iteration the ASR will be reverted to recognizeyotite “keyword”. In the initial turn of
dialog the identification of the speaker could t@k&ce (when available), so that the system
could answer Tell me <username>". Should the identification be unavailable, othe user
was not identified, a simple “welcome jingle” oropmpt (like “Here | am”) will be played
instead.

An alternative implementation could be to join the phases (i.e. activation and usage) into
a single phrase; in this case the “keyword” willthe first word to be spoken in the phrase;
such an approach is also considered in the usfaoe shown below; of course the speaker
identification will take place during the recogaitiof the composite phrase.

The DIRHA system will always wait for user requesit® only case in which the system will
spontaneously start a dialogue (hence skippingirttial “keyword” check) is when the
intercom or telephone is ringing. However such seda not dealt with in the User Interface
shown below.

The User Interface is aware of each and every palysesource of the house (i.e. which
rooms, doors, lights, ... lay in every room) anda# state of each one of them, through the
House+User Profile and House+User State, accortingvhat discussed in Section 6;
however, for sake of simplicity, in the User Intexé presented here, only the command flow
from the Dialog Manager to the House Automatiortesysis designed.

Names (and synonyms) for all the resources of thesér are taken from the House Profile,
that would be different for each users’ home; oa ¢ther hand the dialogue flow defines
other voice commands independent on the house l@raofinese are some “general
commands”, as Cancel, Exit or Stop, to end theacten on the voice interface, and verbs
related to the actions allowed to operate upon &anh

The actions allowed for each device could be nbt werbs representing binary action modes
(e.g. open/close, switch on/off, etc...), but dg@dual” ones, to specify the desired position.
The dialogue flow will allow not only to change tiséate of one item but also to obtain
information about its state.

DIRHA_D5.1_20130220 50

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

However, in the general case, it is preferable thatunderstanding data/knowledge base was
based on the specific House profile, in order toiGwrecognizing some classes or objects
which are not available in that house.

The localization of the speaker is crucial to knehich item he/she is talking about but also
to determine which loudspeakers shall be used \pleging back the responses.

The dialogue assumes that the position of the gpaakprovided with the granularity of the
“room” (i.e. no finer grain localization is assumed

The DIRHA system will be used continuously on alydd&iasis; this must be taken into
account also when designing prompts: while theyukhbe informative enough in the first
period of use they could soon be perceived as dahin(some form of parameterization
could also be adopted).

7.1 Introduction to the Dialog Flow

The dialog must figure out the following parameters

1. class - the class of object that the user is tglkinout (i.e. door, light, ...);

2. action - the action that the user wants to applythen object (including no action,
meaning to know its actual state)

3. attribute — any qualifier that uniquely identifie® object within its class (i.e. its
name); the identification of one object could bé&dained by the system in different
ways:

a. the attribute is provided explicitly
b. the room name is provided explicitly and it has obgct only of that class
c. the room name is provided explicitly, it has matyects of that class but one
is marked as the default one
d. nothing is provided but the user localization hasedted with enough
confidence the position of the speaker: in thisdag dialog assumes that the
room of the item is the one which he/she is in lama ¢ hold;
With respect of the tripledass, action, attribute}, the first element is the most important
one: if the recognized utterance contains only tme the dialogue enters a “refinement”
procedure requesting the other ones in furtherstofrdialogue; in case this one is missing
the dialogue enters a “recovery” procedure whidts dsagain.
The following list reports the utterances that yi#inerate a reaction of the system:

* recognition of objectlass + attribute (in one of the 4 forms above listed): the
refinement procedure is invoked, saying the stafuke item and asking if change in
state is wanted (i.e. “the kitchen light is off; gou want to turn it on?);

* recognition of objectlass + action + attribute (in one of the 4 forms above listed):
the system executes the desired action on the semlebject; in case explicit
confirmation is desired for that object, the “comfation” procedure is will ask a
confirmation before executing the action; if théi@t required would place the object
in the same state it is already, (e.g. the uses shpen a window already open), the
system would ask if he/she wants to change itemfiposite state.

I nteraction with the ASR+Speech Under standing

All the interactions between the Dialog Manager el ASR+ Speech understanding occur
exchanging of “events”, each of one carrying sotteched data: the attached data sent from
DM to ASR+SU are the type of recognition (i.e. Hadivation key or a complete utterance)

DIRHA_D5.1_20130220 51

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

and the recognition context: for Grammar based Wstdeding such context is represented
by the set of grammars relevant for that turn @fialj while, for Language Model based
Understanding such context is represented by thetgdoe pursued

Table 7.1 shows the data attached to events thabgehe DM to the ASR + SU.

Event Description
recognisedkey Only the activation keyword recogize
recognisedanswer Recognized utterance containilegstt one of the semantic elements listed in

the table below.

Table 7.1

Table 7.2 describes the variables (called Semar8ios) expected by the DM as attached to
recognition events, used to manage the dialogtahke contains a brief description of the

content of each slot, the values the DM expectsttier showcase and some examples of
words that produce these values if contained iruie utterance.

Semantic Slot Description Expected values Examples of synonms

Semantics_object House device door / light / wimdo door, light, window,
chandelier

Semantics_obj_attr Attribute of the device smédirge small, little, large, great,

round, square, front

Semantics_action Action to be done on thepen / close / state /open, close, turn on, turn
device turnOn / turnOff / off, how is,
Semantics_location kitchen / bathroom / kitchen, kitchenette,

livingRoom / entrance / bathroom, toilet, living

closet / bedroom /room sitting room,

littteBedroom / hallway closet, broom closet,
utility room, entrance,
bedroom, large bedroom,
little bedroom

Location of the device (room
where the device is)

Semantics_position user position in the houkéchen / bathroom /
detected by the system livingRoom / entrance /
closet / bedroom /

litleBedroom / hallway

Semantics_confirm confirm/negation of the DMWes/no/cancel yes, ok, certain, right,
ask for confirmation or user that's right, no, that't
stop to the dialog wrong, not at all, cancel

ASR_confidence ASR confidence of thés, from 0 to 100

recognized sentence

SP_confidence User Position confidence %, froam D00

DIRHA_D5.1_20130220 52

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

Speaker speaker name when detected
Utterance ASR recognized sentence
Table 7.2

The two slots Semantics_location and Semanticstipesshare the same domain; in the
same turn of dialog the two variables can assuiffieréint values; for example if the user is
in the kitchen and says: “open the bathroom dodnré tvalue of the variable

Semantic_location is “bathroom” while the value thie variable Semantic_postion is
“kitchen”,

Tebel 7.3 shows the names of the grammars thatbeilused by the ASR in the reported
dialog flow; for each grammar the table points thé events and variables (see tables 7.1,
7.2) that are filled and shows some sentence exampl

Grammar file names Returned Event and variables Utterance examples
grammarkey.xml event: recognisedkey
grammar_complete.xml event: recognisedanswer open the door;

close the kitchen window;

turn on the closet light;

close the living room little window;
how is the front door?

variables:
Semantics_object
Semantics_obj_attr
Semantics_action
Semantics_location

grammar_cancel.xml event: recognisedanswer Cancel, stop, annul
variable: Semantics_confirm

event: recognisedanswer the bedroom door

variable: Semantics_location the bathroom one

grammar_yesno.xml event: recognisedanswer Yes, no, ok, not at all
variable: Semantics_confirm

grammar_attribute.xml event: recognisedanswer the round window

variable: Semantics_obj_attr
the large one

Table 7.3

DIRHA_D5.1_20130220 53

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DIRHA

7.2 Discussion of the dialogue flow

In the following a possible dialogue for the DIRH&enario is discussed; it can be seen as a
starting point of the user interface that will bgpiemented for prototype 1.

While the dialogue is represented as the single wmserface taking control of the House
Automation system, thanks to the Concurrent DiadodWianager, it can be instantiated
several times, i.e. one per room; however, thetegyato handle concurrency will be
addressed in the coming months, to be deliverddariinal prototype.

Regarding the addressed services, only thosetiesiwhose dialogue flow really differs
from each other, are reported, like the voice adgon to manage the doors and the lights (a
description of all the services that will be implkemted for the first prototype will be provided
in D1.3). The sub-flow dealing with the windowse(i.“windows management”) is not
detailed in the following, as it is very similar tee “Doors management” one (i.e. only the
prompts change).

N | symbol explanation N | symbol explanation

Decision among alternatives

Start of flow/procedure 5

contained in the user response

Logical Decision

Invoke sub-flow

Prompt issued to the user

Return from sub-flow

Wait for user response
Invoke external procedure
(context reported in the box)

Figure 7.1: Legend

Figure 7-2 shows the top level flow of dialogue: the systealways listening, has to be
“activated” saying the activation keyword; afteethctivation keyword the real first turn of
dialogue can occur: the user can say any commdatedeto the facilities automatized in
his/her home; however, in the reported example dolyrs, windows and light management
are dealt with.

Notice the use of blocks of type 4 (Wait for usespgonse); this blocks activates the ASR+SU
with the specified context (i.e. the recognitioragor grammar names written inside the
block); the flow is blocked until the ASR+SU retara result (including TimeOut or No
Match if it is needed to).

The check at the beginning of the dialogue flowehthe availability of a feature that allows
the user also to say the activation keyword imntetligollowed by a command to operate
on one item.

DIRHA_D5.1_20130220 54

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

Of course there is always an escape command ala(alg. Cancel or Exit), as well there is
always an Error recovery procedure to manage pessbognizer’s errors.

After one user request has been recognized an@gsed the system remains “active” for a
few seconds to let users say another request; thiiterthe system returns to wait for the

activation keyword.

v
grammarkey
grammar_complete
#$
A
grammar_complete +
grammar_cancel
v

#H
Yoy

2+& l\ "0
$# 4S8! ”

DIRHA_D5.1_20130220 55

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DIRHA

Figure 7-2: House facilities procedure

According requirements expressed by interviewedsuggee Deliverable D1.1), the Error
recovery procedure (that manages both misundeistadoblems and missed commands)
tries for two times to recover the “error”, therggest to use the haptic interface.

]

"#$%&' 8 Yot

"HEN&' 8 "%

Figure 7-3: General Error recovery

DIRHA_D5.1_20130220 56

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

Each procedure listed in the “House facilities’'Wlgs related to a class of objects (i.e. doors,
...). Handling of some of them have a similar dialegiructure which can vary depending
by the fact that a confirmation request is neededot before to operate the item. As can be
seen in the following dialogue flow, in the “Doomsanagement” procedure is foreseen a
confirmation because door movements can be “dangéfor an impaired person.

L)

4

2+&$# + 1 "Yo# 1
@ .

v

4+$
"#>%HS'
*34 * 2+&$# "H#$%&'

o

#$
248%# $+'# %m%#
" *

_ v
3
F.#!B P
3*2")
g

"H#$%&' 8 Yot

E2+&$#

"#%&' 8 Yot

Figure 7-4: Doors management

DIRHA_D5.1_20130220 57

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

A precise identification of the object that the uamnts to operate is needed each time that it
is not possible to use a “default”. For this reasbe system propose this “Request location”
procedure if the users does not specify the looatiothe object and/or the recognizer does
not get its location. Before to try to localize titem that the user wanted to operate, the
system should check if the action required by ther uis coherent with the object got by the
recognizer (e.g. it is possible to combine theoactio open” with the object "door”, while
should not be allowed to combine the verb “to opefth the item "light”). If there is no
coherence, the dialogue proposes some error recgvempts (see the right-hand prompt
following the “false” branch).

< DOORS >

l—TRUE @ FALSE

ErrDoor_gen = Please

_open/close

want to <action>?

operate,

command.

A

+

» semantic_position |
_cancel

A ‘ . iﬂ ‘ ‘ CANCEL
1 NOINPUTA 2 NOINPUT2
v

v

l i GEm_NoMatch GErr_Nolnput
8 =Somy, | stil 3=Sorry, Istil | |RESULT = FALSE
ErrDoor_NoMatch1 ErrDoor_Nolnput1 = didn’t didn’t hear. -

= Sorry, | still don’t
. Please sorry,
you .

operate, or say

, or

Figure 7-5: Doors request location

DIRHA_D5.1_20130220 58

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DiRHA

In the “Door management” before to activate a ddw,system requires a confirmation. The
first check of this dialogue procedure is relateé tpart of the dialogue shown on the “Door
management” procedure (see fig. 2): if the uses &skhange the status of the door in a state
eqgual to the one in which the door already is (asfging to open a door already opened), the
dialogue asks if he/she wanted to do the oppositera At the opposite, if the required

action is coherent with the status of the itemthis procedure, the system just requires to
confirm all the collected data.

grammar_yesno ?
grammar_cancel

R

*
| |
9+3 Afc * 5O/IABC N3 @ . 5%‘| @

"#$%&' 8 *

o~NO 4

o
o

3+ 3#&

A

\ |
"'#$%&'82+&$# ‘ "'#$%&'82+&$# ‘

&

Figure 7-6: Confirm Door

DIRHA_D5.1_20130220 59

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

As there is a “General error procedure” in the “B®dacilities” dialogue, also in the “Door
management” service there is an error recovery gom@ which manages both
misunderstanding problems and missed commands.

grammar_complete
?

grammar_cancel

3 ‘ 3+ 3#&
* +'
3 A * 5%'A
l *)+'3 C * 5%‘C
A
x4 $ -6 $ -6
$ 6 7 $ -6 7 7 0 7 0 "HEW&' 8 2+8&$#
0 -0 5 5
0 0

Figure 7-7: Doors Error Recovery

DIRHA_D5.1_20130220 60

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DiRHA

The “Lights management” procedure is reported Hezeause differs from the “Doors
management” procedure, since it does not requoenéirmation before to operate the item
(see the right low branch at the bottom of the riejuNevertheless, also for this service, a
confirmation procedure is still foreseen to mantmgecases in which the requested light is in
a location far from the user (see the left low lsfaat the bottom of the figure).

(Lights)

) 4

FALSEWTRUET

FALSE
Lights Error
recovery
ocation defau
available?
v
LIGHTS
REQUEST
LOCATION FALSE @

TRUE
FALSE— @

NO

TRUE

TRUE

,YEQ
) 4
FALSE/STATEWTRUE
tate=action
required?
<Location>Light_turnedOn/ <Location>Light_ _ NO
turnedOff = The <location> o) _=The
light(s) is(are) <state> <location> light(s) is(are)
‘ already‘<state>
CONFIRM
LIGHTS
FALSE RESULT YES
A
operate

Figure 7-8: Lights management

DIRHA_D5.1_20130220 61

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

8. Conclusions

This document discussed the modules of the DIRH#jept involved in the handling and
fulfilment of the user requests expressed througbken utterances, namely the Dialog
Manager, the Speech Understanding the Prompt Peodinc the house State Keeper.

Such subsystems are devoted to gathering usersésejthrough an interactive process and
fulfilling them, issuing the proper commands to tHheuse Automation system; the Dialog
Manager is the module in charge of conducting ithtisraction, iteratively asking the proper
guestion to elicit the needed information form tiser in the expected form. To this end, the
choice of the prompt phrase is crucial to “linguiglly induce” the user to give its answer in
the expected way, hence to improve the overallracguwof the system.

The dialog process can take from one to severadtitms, ranging from the case of the
trained user who says all the relevant informatainonce (and the system correctly
understands it) to several turns of dialog, whéee Dialog Manager tries to complete the
needed set of information pieces asking dedicatezstgpns — of course a well designed
dialog should set a limit in the length of the mattion and give up in case such a limit is
exceeded.

After a short survey of the approaches to dialoghagement the report highlighted the
approach to be followed in the DIRHA project; irder to fulfil the challenging constraint of
handling more than one session taking place irewfft rooms, a state based approach has
been chosen for the dialog management and, incpkati the formalism proposed by D.
Harel in its State Charts methodology has been tado@an executor of concurrent state
machines has been developed; its input formalisid\-XML has been defined subsetting
the SCXML language being standardized (not yet @t at the date of writing) at W3C
(see Appendix 1 for the MIA-XML reference manudersion 1.0 of the executor has been
released and is ready to be used in the first pqo¢o(M18 and M24); in the while an
improved version will be developed in the M12-M2sd¢frame.

The developments in Speech Understanding have dlisenssed in Section 3; actually two

approached are being investigated, the grammadtask the data-driven with the intention

to compare the safer but limited use of grammathk tihle more generalized paradigm based
on statistics. The work on the data-driven appraactonsidered as medium-term research
activity as it requires a preliminary implementatiof some auxiliary tools: as such, the

resulting component will not be directly integraiadthe intermediate prototype. Moreover,

the possible advantage of this approach will be smesml not only in terms on pure

performance but also considering time and resgui@ethe development as it is believed
that the initial major effort can be later compedadaby a faster porting to new users and
settings.

The aspects of User and House Profile and State begn addressed and a data model for
their handling has been discussed.

After the discussion of each and every single camepo(i.e. the Dialog Manager, the Speech
Understanding, the Prompt Producer, and the Hotete eeper) their mutual integration
has been discussed, in Section 6; some intermedaitggrations (i.e. where not all the
components are available) have already been pezkem particular the one with an
emulated version of the ASR+SU and of the Housewation are of interest, as they allow
to start implementing advanced state machines atfdade.

DIRHA_D5.1_20130220 62

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

This phase has actually already started: startimg the requirements gathered in WP1 (see
D1.1) an initial system has been designed to beodstrated in the Dialog Showcase (see
D6.1) and is currently being evolved accordingh® tesults of the Wizard of Oz experiments
to become the base for the first DIRHA prototypeciBa system has taken as a case study in
Section 7 to discuss the process of implementisigsgem using the DM and its “ecosystem”.

DIRHA_D5.1_20130220 63

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DTRHA

Refer ences

[1] J. Peckham, A new generation of spoken dialggfesns: results and lessons from the
SUNDIAL project. In Proc. of the European Confereran Speech, Communication and
Technology. 33-40, 1993

[2] L. Lamel, S. Rosset, J. Gauvain.and S. Nerfnatke LIMSI ARISE system for train
travel information. In Proc. of the IEEE Internatéd Conference on Acoustics, Speech and
Signal Processing. 501-504, 1999.

[3] Voice Extensible Markup Language (VoiceXML) \$ayn 2.0. W3C Recommendation 16
March 2004

[4] M. McTear, Modelling spoken dialogues with statansition diagrams: Experience of the
CSLU toolkit. In Proc. of the International Confece on Spoken Language Processing.
1223-1226, 1998

[5] T. Paek, Reinforcement learning for spokenafiak systems: comparing trengths and
weaknesses for practical deployment. In Proc. ofk&tmop on Dialogue on Dialogues,
International Conference of Spoken Language Prougs2006

[6] O. Lemon, X. Liu, D. Shapiro and C. Tollandgligrarchical Reinforcement Learning of
Dialogue Policies in a development environment d@logue systems: REALLDUDE. In
Proc. of Brandial, the 10th SemDial Workshop onSleenantics and Pragmatics of Dialogue,
2006

[7] J. D. Williams, The best of both worlds: Unifig conventional dialog systems and
POMDPs. In Proc. of the International Conferencé&poken Language Processing, 2008.
[8] Collin F. Baker, Charles J. Fillmore, and JdhnLowe. The Berkeley FrameNet Project.
In Proceedings of the 17th international conferemeeéComputational linguistics, pages 86—
90, 1998.

[9] Roberto Basili, Diego De Cao, Alessandro Leng&lessandro Moschitti, and Giulia
Venturi. Evallta 2011: the Frame Labeling overi#talTexts Task. Springer, 2012.

[10] Roberto Basili, Diego De Cao, Danilo Croce,nAgentura Coppola, and Alessandro
Moschitti. Cross-Language Frame Semantics Trangfer Bilingual Corpora. In
Computational Linguistics and Intelligent Text Reesing, Lecture Notes in Computer
Science, chapter 27, pages 332-345. 2009.

[11] Bonaventura Coppola and Alessandro MoschittiGeneral Purpose FrameNet-based
Shallow Semantic Parser. In Proceedings of thel@thguage Resources and Evaluation
Conference, pages 19-21, La Valletta, Malta, 2010.

[12] Bonaventura Coppola, Alessandro Moschitti, &idseppe Riccardi. Shallow semantic
parsing for spoken language understanding. In HIAANL (Short Papers), pages 85-88,
2009.

[13] Dipanjas Das, Nathan Schneider, Desai Cheth,Noah A. Smith. Probabilistic Frame-
Semantic Parsing. In Proceedings of the 11th An@aiference of the North American
Chapter of the Association for Computational Lirggiais, pages 948-956, Stroudsburg, PA,
USA, June 2010.

[14] Dipanjas Das, Nathan Schneider, Desai Ched,Noah A. Smith. SEMAFOR 1.0: A
Probabilistic Frame-Semantic Parser. Technical RepMU-LTI-10-001, Carnegie Mellon
University, 2010.

[15] Marie-Catherine de Marneffe, Bill MacCartnegnd Christopher D. Manning.
Generating Typed Dependency Parses from Phraset8&uParses. In Proceedings of the

DIRHA_D5.1_20130220 64

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DTRHA

IEEE / ACL 2006 Workshop on Spoken Language Tedamol The Stanford Natural
Language Processing Group, 2006.

[16] Benoit Favre, Bernd Bohnet, and Dilek Hakkanr. Evaluation of semantic role
labeling and dependency parsing of automatic spesmdgnition output. In ICASSP, pages
5342-5345, 2010.

[17] Charles J. Fillmore. Frames and the semanficsderstanding. Quaderni di Semantica,
IV(2):222—-254, 1985.

[18] C.J. Fillmore, C.R. Johnson, and M. R. L. Belr Background to FrameNet.
International Journal of Lexicography, 16:235-258ptember 2003.

[19] Richard Johansson and Pierre Nugues. Lth: sgBmastructure extraction using
nonprojective dependency trees. In Proceedingshef 4th International Workshop on
Semantic Evaluations, SemEval '07, pages 227-23fpu&sburg, PA, USA, 2007.
Association for Computational Linguistics.

[20] Alberto Lavelli, Johan Hall, Jens Nilsson, abhabkim Nivre. Maltparser at the evalita
2009 dependency parsing task. In Proceedings ofLEVA 2009, 2009.

[21] Alessandro Lenci, Simonetta Montemagni, GiMenturi, and Maria Grazia Cutrull’a.
Enriching the isst-tanl corpus with semantic framedNicoletta Calzolari (Conference
Chair), Khalid Choukri, Thierry Declerck, Mehmetduir Do gan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, editd*syceedings of the Eight International
Conference on Language Resources and EvaluatioBGLR), Istanbul, Turkey, may 2012.
European Language Resources Association (ELRA).

[22] Ryan McDonald, Koby Crammer, and Fernando iPer®nline large-margin training of
dependency parsers. In Proceedings of the 43rd #vieeting of the Association for
Computational Linguistics (ACL'05), pages 91-98 nAfrbor, Michigan, June 2005.
Association for Computational Linguistics.

[23] Marco Pennacchiotti, Diego de Cao, RobertolB&3anilo Croce, and Michael Roth.
Automatic induction of FrameNet lexical units. IroBeedings of Empirical Methods in
Natural Language Processing, pages 457-465, 2008.

[24] Adwait Ratnaparkhi. A maximum entropy model part-of-speech tagging, 1996.

[25] Marcella Testa, Andrea Bolioli, Luca Dini, a@lampaolo Mazzini. Evaluation of a
semantically oriented dependency grammar for iadibevalita 2009.

[26] Sara Tonelli and Emanuele Pianta. Frame in&tion transfer from english to italian. In
Bente Maegaard Joseph Mariani Jan Odijk SteliosrRifg Daniel Tapias Nicoletta Calzolari
(Conference Chair), Khalid Choukri, editor, Prodegd of the Sixth International
Conference on Language Resources and EvaluatioBGL0®8), Marrakech, Morocco, may
2008. European Language Resources Association (ELRA

[27] Marco Matassoni, Fabio Brugnara, Roberto t8reEvalita 2011: Automatic Speech
Recognition — Large Vocabulary Transcription, Sgein Evaluation of Natural Language
and Speech Tools for Italian , pages 274-285, 2013.

[27] Ronny Ronny, Aamir Shakoor, Fabio Brugnarab&to Gretter, The FBK ASR
System for Evalita 2011, Evaluation of Natural Laage and Speech Tools for Italian,
Springer, pages 295-304, 2013.

[28] Daggett, Greg, DICIT Architecture, tools stands, Hardware and Software for the first
prototypes. DICIT Deliverable D2.1 - 2007

[29] David, Harel, Statecharts: A Visual Formalifon Complex Systems, Science of
Computer Programming. Volume 8. pp. 231 to 2748719

DIRHA_D5.1_20130220 65

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,

DIRHA

dialogue management and feedback to the user

[30] State Chart XML (SCXML): State Machine Notatitor Control Abstraction, W3C
Working Draft, 6 December 201tp://www.w3.0rg/TR/2012/WD-scxml-20121206/

DIRHA_D5.1_20130220

66

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,

dialogue management and feedback to the user

DIRHA

Appendix 1. The MIA-XML Reference Manual

In the following the MIA-XML language is documenteslome tags are not yet implemented
in Release 1.0; they will be shown with shaded bemknd; they have been reported in this
manual since they have been included in the largguagdesign; they will be included in the
next release.

Al.1 Core Constructs of the MIA-XML language

<mia_xml>

The top-level wrapper element, which carries versidormation. The actual state machine
consists of its children. Note that only one of thddren is active at any one time.

Attribute Details

Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
initial false | none IDREFS none| A validid The id thie initial state(s

for the document. If not
specified, the default initia

state is the first child state i

=]

document order.

name false | none NMTOKEN nong Any validhe name of this state
NMTOKEN | machine. It is for purely

informational purposes.

xmins true none URI none

version true none decimal non¢ "1.0"

datamodel false | none NMTOKEN “"prop"proprietary | "proprietary” denotes the
rietar | ” one used by MIX-XML
y"

binding false | none enum "early"early", The data binding to use.

“late"
Children

Name times Description

<state> >=0 A compound or atomic state

<parallel> >=0 A parallel state.

<datamodel> >=0 Defines part or all of the dataetod

DIRHA_D5.1_20130220 67

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

[DERHA]

<final> >=0 A top-level final state in the stateachine.

<state>
Holds the representation of a state.

Attribute Details

Name Requ | Attribute | Type Def.lt | Valid Description

ired Constr.ts Value | Values
id false | none ID none | Avalidid The identifier for this state.
initial false | See note IDREFS none A legal statehe id of the default initia

specification | state (or states) for this state.

Note(s): Cannot be specified in conjunction witle thinitial> element. Cannot occur in
atomic states.

Children
Name times Description
<onentry> >=0 holds executable content to be ponientering this <state>.
<onexit> >=0 holds executable content to be ruem#xiting this <state>
<state> >=0 Defines this <state> as a compourig,steith its own structure. Defines |a

sequential substate of this <state>

<transition> >=0 Defines an outgoing transitioonfi this <state>

<initial> >=0 In states that have substates, aoppl child which identifies the default initia

1%

state. Any transition which takes the parent statéts target will result in the

state machine also taking the transition containsidie the <initial> element

<final> >=0 Defines this as a parallel substate
<parallel> >=0 Defines this as a parallel substate
<datamodel> 0:1 Defines the datamodel

Note(s):

1. An atomic state is one that has no <state> or <parallel> children.

2. A compound state is one that has <state> or <gératihildren (or a combination of
these).

3. either an "initial" attribute or an <initial> elemtecan be specified, but not both. If neither
the "initial" attribute nor an <initial> element specified, the MIA-XML executor will
use the first child state in document order ad#éfault initial state.

<paralle>

DIRHA_D5.1_20130220 68

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

The <parallel> element encapsulates a set of dtdtes which are simultaneously active
when the parent element is active.

Attribute Details

Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
id false | none ID none | Avalidid | The identifier for this state.
Children
Name times Description
<onentry> >=0 holds executable content to be ponientering this <state>.
<onexit> >=0 holds executable content to be ruem#xiting this <state>
<state> >=0 Defines this <state> as a compourig,steith its own structure. Defines|a

sequential substate of this <state>

<transition> >=0 Defines an outgoing transitioonfi this <state>

<initial> >=0 In states that have substates, aiopgl child which identifies the default initia

state. Any transition which takes the parent statéts target will result in th

11%

statemachine also taking the transition containsitie the <initial> element

<parallel> >=0 Defines this as a parallel substate

<datamodel> 0:1 Defines the datamodel

<transition>

Transitions between states are triggered by exmrdonditioned by guard conditions. They
may contain executable content, which is executeelhvihe transition is taken.

Attribute Details

Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
event false | none Event none¢ A space-

| A list of designators o
separated lis

1°

events that trigger thi

of event N
. transition.
descriptors.
cond false | none Boolean ‘true’ | Any boolean| The guard condition for this
expression expression. | transition..
target false IDREFS none A legal stat&he identifier(s) of the state

specification| or parallel region tg

transition to.

DIRHA_D5.1_20130220 69

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

D

type false | emun "external” none "external"| Determines whether th

“internal” source state is exited |

— 3

transitions whose targe
state is a descendant of the

source state

Children
Name times Description
executable cont, >=0 such executable content is run after all theexit> handlers and before the all
(see below) <onentry> handlers that are triggered by this itemms

Note(s): Transition a must specify at least onewént’, ‘cond’ or 'target'.
<initial>

This element represents the default initial stateaf complex <state> element (i.e. one one
containing child <state> or <parallel> elements.

Children

Name times Description

<transition> 0:1 A transition whose 'target' sfies the default initial state(s). This transition

cannot contain 'cond' or 'event' attributes, arall dpecify a non-null ‘targe
whose value is a valid state specification. Thasisition can contain executahle

content.

<final>
represents a final state of an <mia_xml> or comgotstate> element.

Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
id false none ID none| Avalidid The identifier finis state.
Children
Name times Description
<onentry> >=0 holds executable content to be ponentering this <state>.
<onexit> >=0 holds executable content to be ruem#xiting this <state>

DIRHA_D5.1_20130220 70

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,

dialogue management and feedback to the user

<onentry>

A wrapper element containing executable contebetexecuted when the state is entered.

Children
Name times Description
Executable >=0 The <onentry> handlers of a state are execimedbcument order when the
content state is entered. In doing so, it treats each leandé a separate block pf
executable content.
<onexit>

A wrapper element containing executable contebetexecuted when the state is exited.

Children
Name times Description
Executable >=0 The <onentry> handlers of a state are execimedtbcument order when the
content state is entered. In doing so, it treats each leandé a separate block pf
executable content.
<history>

The <history> pseudo-state allows allows a statehma to remember its state configuration.
A <transition> taking the <history> state as iteg& will return the state machine to this
recorded configuration.

Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values

id false ID none | Avalidid Identifier for this esdo-
state

type false | enum Boolean "shall | "deep", Determines whether the

expression | ow" "shallow" active atomic substate(s) of
the current state or only ifs
immediate active substate(s)
are recorded
Children
Name times Description

DIRHA_D5.1_20130220

71

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

<transition> 1 A transition whose 'target' spesifithe default history configuration. This

transition cannot contain ‘cond’ or 'event' attiélsyand shall specify a non-nu
'target’ whose value is a valid state specificatibnis transition can contain

executable content. If ‘type' is "shallow", ther tharget' of this <transition»

must contain only immediate children of the pastate.

Note(s): if the 'type' of a <history> element isdBow", the MIA-XML executor records the
immediately active children of its parent beforkiig any transition that exits the parent. If
the 'type’ of a <history> element is "deep”, theamor records the active atomic descendants
of the parent before taking any transition thatsethe parent. After the parent state has been
visited for the first time, for each <history> elemt, we define the set of states that the
processor has recorded to be the 'stored statéguaation' for that history state. We also
define the states specified by the 'target’ ofthistory> element's <transition> child to be
the 'default stored state configuration' for tHatreent.

If a transition is executed that takes the <histastate as its target, the behavior depends on
whether the parent state has been visited befoitehds, the MIA-XML executor behaves as

if the transition had taken the stored state camfigon for that history state as its target. If it
has not, the executor behaves as if the transitiad taken the default stored state
configuration for that history state as its tar@dbte that a single <state> or <parallel>
element can have both "deep" and "shallow" <histatyildren).

Al.2 Executable Content in the MIA-XML language

<| 0g>

<log> allows an application to generate a loggimgdebug message on the file named
<stateMachine>.slg, where <stateMachine>.xm| costaihe MIA-XML of the State

Machine.
Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
Label false string empty A character string. It i$
expression | string intended to provide mets-
data about the log string
specified by 'expr'.
Expr false Value none An expression returning the
expression value to be logged.

Note(s): The manner in which the message is display logged is platform-dependent. The
MIA-XML executor works in a way that <log> has nades-effects on document
interpretation.

DIRHA_D5.1_20130220 72

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DIRHA

<assign>
The <assign> element is used to modify the dataeiod

Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
location True path none | Any valid| The location in the data
expression location model into which to insert
expression. | the new value.
expr false | This value none | Any valid| An expression returning the
attribute | expression value value to be assigned
must not expression
occur in
an
<assign>
element
that has
children.
Children
Name times Description
subfields >=0 element provide an in-line spectfma of the legal data value to be inserted
into the datamodel at the specified location.

Note(s): assign must specify either "expr" or afdof <assign>, but not both.

Assignment to a data model is done by using a ilmtaxpression to denote the part of the
data model where the insertion is to be made.dfltitation expression does not denote a
valid location in the datamodel or if the value gfied (by 'expr' or children) is not a legal
value for the location specified the assign isperformed..

<raise>

The <raise> element raises an event in the cuenegtution session. Note that the event will
not be processed until the current block of exdsataontent has completed and all events
that are already in the internal event queue haen lprocessed. For example, suppose the
<raise> element occurs first in the <onentry> handif state S followed by executable
content elements ecl and ec2. If event el is gireathe internal event queue when S is
entered, the event generated by <raise> will ngirbeessed until ecl and ec2 have finished
execution and el has been processed.

DIRHA_D5.1_20130220 73

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

Attribute Details

Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values

event true NMTOKEN| none Identifier for this pseud
state

type false | enum Boolean "shall | "deep", Specifies the name of the

expression | ow" "shallow" event. This will be matched

against the 'event' attribute
of transitions.

Note: the event that will be placed at the back @ntie session's internal event FIFO queue.

<if> <dsaf> <ese>

<if> is a container for conditionally executed ebats.
<elseif> is an empty element that partitions theteot of an <if>, and provides a condition
that determines whether the partition is executed.

<else> is an empty element that partitions the ergnbf an <if>. It is equivalent to an
<elseif> with a "cond" that always evaluates tetru

Attribute Details of <if>

Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
Cond True Conditional | ‘true’

A boolean expression

expression

Children of <if>

Name times Description

<elseif> >=0 See below

<else> >=0 See below

Executable >=0 Note that since <if> itself is executable @t nested <if> statements are
content allowed

Note(s): the behavior of <if> is defined in ternfgartitions of executable content. The first
partition consists of the executable content betwtee <if> and the first <elseif>, <else> or
</if> tag. Each <elseif> tag defines a partitiomttlextends from it to the next <elseif>,
<else> or </if> tag. The <else> tag defines a partithat extends from it to the closing </if>
tag. A partition may be empty. <else> must occteradll <elseif> tags.

DIRHA_D5.1_20130220 74

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DIRHA

When the <if> element is executed, the executocues the first partition in document
order that is defined by a tag whose ‘cond' atteibevaluates to true, if there is one.
Otherwise, it executes the partition defined by<bhkse> tag, if there is one.

The following is is an example:

<if cond="cond1">

<!-- selected when "cond1" is true -->
<elseif cond="cond2"/>
<!I-- selected when "cond1" is false and "cond2" i
<elseif cond="cond3"/>
<!I-- selected when "cond1" and "cond2" are false

<else/>

<l-- selected when "cond1", "cond?2", and "cond3"

</if>

<foreach>

The <foreach> element allows the executable comtkatstate to iterate through a collection

S true -->

and "cond3"

are false -->

is true -->

in the data model and to execute the actions aoedawithin it for each item in the

collection.
Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
array true Value none | A value|
expression expression _

that The <foreach> element will
evaluates td |teraj[e over E'.;l shallow copy
an iterable of this collection.
collection.

item true xsd:string none| Any variableA variable that stores a
name that ig different item of the
valid in the| collection in each iteration
specified of the loop.
data model.

index false xsd:string none Any variahlé variable that stores the
name that ig current iteration index upon
valid in the| each iteration of the foreagh
specified loop.
data model.

Children
Name times Description

DIRHA_D5.1_20130220

75

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DIRHA

Executable >=0 items of executable content. (Note that they @onsidered to be part of the
content same block of executable content as the pareneafbr> element.)

Note(s): The executor declares a new variable af dhe specified by ‘item' is not already
defined. If 'index' is present, the executor dexdaa new variable if the one specified by
'index’ is not already defined. If 'array’ does ewvaluate to a legal iterable collection, or if
'item' does not specify a legal variable name, ¢kecutor terminates execution of the
<foreach> element and the block that contains it.

The executor acts as if it has made a shallow amipyhe collection produced by the
evaluation of 'array'. Specifically, modificatioms the collection during the execution of
<foreach> shall affect the iteration behavior. x@cutor starts with the first item in the
collection and proceed to the last item in theatien order that is defined for the collection
(This order depends on the data model in use)ekoh item in turn, the processor assigns it
to the item variable. (Note that the assigned vahag be null or undefined if the collection
contains a null or undefined item.) After making thssignment, the executor evaluates its
child executable content. It then proceeds to thd item in iteration order. If the evaluation
of any child element causes an error, the processases execution of the <foreach> element
and the block that contains it (Note that thenedsreak functionality to interrupt <foreach>,
however targetless and/or eventless transitionspcavide sophisticated iterative behavior
within the state machine itself).

Al1l.3 The DataModel in the MIA-XML language

<datamodel>

<datamodel> is a wrapper element which encapsutatgsiumber of <data> elements, each
of which defines a single data object. Top-levehtathodel> is one occurring directly under
the <mia_xml> element.

Children
Name times Description
<data> >=0 Each instance defines a named dataertem
<data>

The <data> element is used to declare and popptatens of the datamodel.

Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
id true ID none The name of the data iten
expr false Expression none Any valicEvaluates to provide the
value value of the data item.

DIRHA_D5.1_20130220 76

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

expression
type enum “num| “number”, Provides the type of the data
ber” | “sting” item
Children
Name times Description
<data> >=0 Nested data
Note(s):

1. If the 'expr' attribute is present, the executaleates the corresponding expression at the
time specified by the 'binding' attribute of <mianlx and assigns the resulting value as
the value of the data element. If the value spettifor a <data> element is not correct,
the executor flags an error.

2. The MIA-XML executor uses any values provided bg #nvironment at activation time
as defaults, in place of those provided in the féagtribute, for those elements contained
in the <data> elements of the top-level <datamazlel>

<content>

A container element holding data to be passed tex&rnal service: by means of <send> or
<invoke> tags. When evaluating the <content> elgmiérthe 'expr' value expression is
present it is evaluated first and the result i®ta&s the <content> element. If the evaluation
of 'expr' produces an error, the empty string sdugs the value of the <content> element. If
the 'expr' attribute is not present, the childréra@ntent> is considered (see explanation of
the children of the tag).

Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
Expr false | must not Value none | Any valid| A value expression
occur with | expression value
child expression
content

Note(s): the 'expr' attribute and child contemesalternative.

<param>

The <param> tag provides a general way of idemiifya key and a dynamically calculated
value which can be passed to an external servioeluded in an event.

DIRHA_D5.1_20130220 77

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA]

Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values
name true NMTOKEN| none| A stringThe name of the key
literal
expr false | May not value none | Valid valug A value expression
occur with | expression expression
location’
location false May not Variable none | Valid The name of the key
occur with | name location
‘'expr’ expression
type false Type name none number The type of dinarpeter

Note(s): the 'expr' and 'location’ attributes dtermaative. If the 'location' attribute does not
refer to a valid location in the data model, oihi¢é evaluation of the 'expr' produces an error,
the <parameter> tag is ignored.

System Variables

e _sessionid. This is a system-generated id for the current MML session; such a
variable is valid and constant until the sessiomieates.

e _name. This variable is bound at load time to the vadfieche 'name’ attribute of the
<mia_xml> element. Such a variable is valid andstamt until the session terminates.

Al.4 External Communication in the MIA-XML language

<send>

<send> is used to send events and data to extsysté¢ms, including other MIA-XML
executors, or to raise events in the current MIA{X8&ssion.

Attribute Details

Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values

event False| Must ngtEventType.d| none | A string| A string indicating the name
occur with | atatype literal of message being generated
‘eventexpr'

eventexpr False| Must ngotValue none | Valid valugl A dynamic alternative tg
occur with | expression expression | 'event’. See note 1 below
‘event'.

DIRHA_D5.1_20130220 78

© DIRHA Consortium 2012-2014

DIRHA

D5.1 - Design of components for under standing,

dialogue management and feedback to the user

154

="

D

o

11°

o

D

target False| Must natUR] none | A valid| The unique identifier of the
occur with target URI message target that the
‘targetexpr platform should send the
' event to.
targetexpr False| Must notValue none | Valid valug A dynamic alternative tg
occur with | expression expression | ‘target’. See note 1 below
‘target’.
type False | Must not string none | “xml” The type of formatting g
occur with the POST payload
'typeexpr
typeexpr False| Must natstring none | Valid value
occur with | expression expression
type.
id False | Must not EventType.d| none | A string| A string indicating the nam
occur with | atatype literal of message being generate
‘eventexpr'
idlocation False | Must natLocation none | Any valid| A dynamic alternative to id|
occur with | expression location See note 1 below
‘event’. expression
delay false Must not Duration.dat| none | A time| A string indicating the nam
occur with | atype designation | of message being generate
'delayexpr’
see note 2
delayexpr False| Must notValue none | Valid valug A dynamic alternative tg
occur with | expression expression | delay. See note 1 below
delay. See
note 2
namelist False| See notel3 List ofione | List of datd A space-separated list of
location model one or more data mode
expressions locations locations to be included as
attribute/value pairs with th
message.
Note(s):

1. If this attribute is present, its actual value Wk evaluated when the parent <send>

element is evaluated and treat the result adhddtbeen entered as the static value.
2. Must not occur with 'delayexpr' or when the atttébttarget’ has the value "_internal”.
3. Must not be specified in conjunction with the <paraor <content> elements.

DIRHA_D5.1_20130220

79

© DIRHA Consortium 2012-2014

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DiRHA

Children

Name times Description

<param> >=0 this element is evaluated when the parent <sendmesit is

evaluated: the resulting data is passed to theredtservice when
the message is delivered.

<content> >=0 this element is evaluated when the parent <sendmesit is

evaluated: the resulting data is passed to theredtservice when
the message is delivered.

Note(s):

1.

2.

Only one of 'event’, 'eventexpr' and <content> niesprovided; "namelist" or <param>
cannot be provided along with <content>.

If 'idlocation’ is present, an id is generated when parent <send> element is evaluated,
such an id is stored in the provided location.

If a delay is specified via 'delay' or 'delayexgrich time interval will be waited for
before sending the event: note that the evaluatidhe send tag will return immediately.
However all arguments to <send> are evaluated viher<send> element is evaluated,
and not when the message is actually dispatchele lévaluation of <send>'s arguments
produces an error, the message will be discardéatebattempting to deliver it. If the
MIA-XML session terminates before the delay intétvas elapsed, such message will be
discarded without attempting to deliver it.

<invoke>

The <invoke element is used to create an instahaa external service.

Attribute Details
Name Requ | Attribute | Type Def.lt | Valid Description
ired Constr.ts Value | Values

type false | Must not URI none | A string| The URI that identifies the
occur with literal transport mechanism for the
'typeexpr message.

typeexpr false | Must natValue none | Valid valugl A dynamic alternative tg
occur with | expression expression | 'type'. See note 1 below
type.

src false | Must not Duration.dat| none | A time| A string indicating the name
occur with | atype designation | of message being generated
srcexpr
see note 2

srcexpr false | Must not Value none Valid value A ayic alternative tq

DIRHA_D5.1_20130220 80

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

DIRHA

occur with | expression expression delay. See note 1 below
src. See
note 2
namelist false | Seenote|3 List pohone | List of datd A space-separated list oOf
location model one or more data model
expressions locations locations to be included ds
attribute/value pairs with the
message.
Children
Name times Description
<param> >=0 Element containing data to be passed to the invekedce
<finalize> 01 Element containing executable content to massage dhta
returned from the invoked component.
<content> >=0 this element is evaluated when the parent <invokksment is
evaluated: the resulting data is passed to theket/gervice.

Note: Exactly one of src, param and <content> nbasprovided; However <param> may
occur multiple times.

<finalize>

The <finalize> element enables an invoking sessmmupdate its data model with data
contained in events returned by the invoked sessibnalize> contains executable content
that is executed whenever the external servicangtan event after the <invoke> has been
executed. This content is applied before the sy$beks for transitions that match the event.
In the case of parallel states, only the finaliadecin the original invoking state is executed.

Children

Name times Description

Executable |>=0

content

Note(s):
1. the executable content inside <finalize> must ae events or invoke external actions.
In particular, the <send> and <raise> elements maofsbccur.

2. If one or more elements of executable content exifipd, they will be executed each
time an event is received from the child process Was created by the parent <invoke>
element.

3. If no executable content is specified, the execufmtates the data model each time an
event is received from the child process that waated by the parent <invoke> element.

DIRHA_D5.1_20130220 81

© DIRHA Consortium 2012-2014
D5.1 - Design of components for under standing,
dialogue management and feedback to the user

IDIRHA

Specifically if the parent <invoke> element contar one or more <param> children
containing 'location’ attributes, then for eachhsgparam> element, the Processor will
update the corresponding location with any retualue that has a name that matches the
'name’ of the <param> element. Thus the effechofiavoke> with an empty <finalize>
element and a <param> element with a 'locationbate is first to send the part of the
data model specified by ‘location’ to the invokedhponent and then to update that part
of the data model with any returned values thathiéne same name (this implements
parameter passing bwadlue and return” among the state machine and the external
service). Note that the automatic update doesak@ place if the <finalize> element is
absent as opposed to empty.

Al15TheDTD of the MIA-XML language as of Releasel.0

In the following the DTD of the mia-xml languagegoported by Release 1.0 is reported.
<?xml version="1.0" encoding="utf-8"?>
<IELEMENT mia_xml (state | parallel | final | datam odel)+>
<IATTLIST mia_xml
initial CDATA #IMPLIED
name CDATA #IMPLIED
xmins CDATA #REQUIRED
version “1.0”
datamodel (proprietary) "proprietary"
binding (early|late) "early”>

<IELEMENT state (onentry | onexit | transition | in itial | state | parallel
| datamodel | final)*>

<IATTLIST state id CDATA #REQUIRED

initial CDATA #IMPLIED >
<IELEMENT parallel (onentry | onexit | transition | state | parallel)*>
<IATTLIST parallel id CDATA #IMPLIED >
<IELEMENT executableContent (send | assign | log)>
<IELEMENT transition (executableContent)*>
<IATTLIST transition

event CDATA #IMPLIED

cond CDATA #IMPLIED

target CDATA #IMPLIED

type (external | internal) "internal” >
<IELEMENT initial (transition)>
<!IELEMENT final (onentry, onexit)*>
<IATTLIST final id CDATA #REQUIRED >
<IELEMENT onentry (executableContent)*>
<!IELEMENT onexit (executableContent)*>
<IELEMENT datamodel (data)*>
<IATTLIST data

id CDATA #REQUIRED

type (integer|string) " number"

expr CDATA #IMPLIED >

DIRHA_D5.1_20130220 82

© DIRHA Consortium 2012-2014

DIRHA

D5.1 - Design of components for under standing,
dialogue management and feedback to the user

<IELEMENT send (parameter)>
<IATTLIST send
event CDATA #IMPLIED
eventexpr CDATA #IMPLIED
target CDATA #IMPLIED
targetexpr CDATA #IMPLIED
type (xml | basichttp) "xml"
typeexpr CDATA #IMPLIED
id CDATA #IMPLIED
idlocation CDATA #IMPLIED
delay CDATA #IMPLIED
delayexpr CDATA #IMPLIED
namelist CDATA #IMPLIED>
<IELEMENT param>
<IATTLIST param
name CDATA #REQUIRED
expr CDATA #IMPLIED
location CDATA #IMPLIED
type (integer | string) "integer">
<IELEMENT assign>
<IATTLIST assign
location CDATA #REQUIRED
expr CDATA #IMPLIED>
<IATTLIST log
label CDATA #IMPLIED
expr CDATA #REQUIRED >

DIRHA_D5.1_20130220

83

