
© DIRHA Consortium 2012-2014

§

Deliverable 5.1

Design of components for understanding,
dialogue management and feedback to the user

Authors: Roberto Manione (NewAmuser),

Fiorenza Arisio (NewAmuser),

Elisabetta Gerbino (NewAmuser),

Claudio Giuliano (FBK),

Marco Matassoni (FBK)

 Date: March 15th, 2013

Document Type: R

Status/Version: Final 1.0

Dissemination Level: PU

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D1.2_20130220 ii

Project Reference FP7-ICT-2011-7 - 288121

Project Acronym DIRHA

Project Full Title Distant-speech Interaction for Robust Home Applications

Dissemination Level PU

Contractual Date of

Delivery
December 31, 2012

Actual Date of Delivery March 15, 2013

Document Number DIRHA_D5.1_20130315

Type R

Status & Version Final 1.0

Number of Pages 3+83

WP Contributing to the

Deliverable
WP5

WP Task responsible Roberto Manione (NewAmuser)

Authors (Affiliation) Roberto Manione, Fiorenza Arisio, Elisabetta Gerbino
(NewAmuser), Claudio Giuliano, Marco Matassoni (FBK)

Other Contributors

Reviewer

EC Project Officer Pierre Paul Sondag

Keywords: understanding, dialog management, voice user interface, voice recognition, state

charts, state machines,

Abstract: This document describes the achievements obtained during Year 1 in the DIRHA
project towards the developments of components aimed to handle and fulfil user requests
expressed through spoken utterances.
The Dialog Manager, the Speech Understanding, the Prompt Producer, and the House State
Keeper are devoted to figuring out users’ requests from their utterances and fulfilling them,
issuing the proper commands to the House Automation system; to accomplish this task they
gather input from the rest of the DIRHA system, in particular Source Localization, Speech
and Speaker Recognition, dealt with by other WPs of the project.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D1.2_20130220 iii

Contents
1. Introduction... 1
2. DIRHA approach to Concurrent Dialogue Management.. 3

2.1 Introduction to Dialog Management ... 3
2.2 Design choices in the DIRHA Dialog Management... 5

3. Natural Language Understanding ... 10
3.1 Grammar-based approach ... 10
3.2 Data-driven approach.. 14

4. Design of the State Based Concurrent Dialog Manager ... 24
4.1 Introduction to the MIA-XML language .. 24
4.2 The Core Constructs of the MIA-XML language... 30
4.3 Executable Content in the MIA-XML language... 31
4.4 Data modelling in the MIA-XML language ... 32
4.5 External Communication in the MIA-XML language.. 35
4.6 Release 1.0 of the MIA-XML executor .. 37

5. House+User Profile and House+User State.. 40
5.1 The House+User Profile.. 40
5.2 The House+User State .. 41
5.3 Synchronization among physical resources and House State 44

6. Integration of the CDM within the DIRHA environment... 45
7. Design of the User Interface Dialogue Flow .. 50

7.1 Introduction to the Dialog Flow.. 51
7.2 Discussion of the dialogue flow.. 54

8. Conclusions... 62
Appendix 1. The MIA-XML Reference Manual ... 67

A1.1 Core Constructs of the MIA-XML language .. 67
A1.2 Executable Content in the MIA-XML language...72
A1.3 The Data Model in the MIA-XML language .. 76
A1.4 External Communication in the MIA-XML language.. 78
A1.5 The DTD of the MIA-XML language as of Release1.0 ... 82

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 1

1. Introduction

This document describes the activities and achievements in Year 1 of the DIRHA project in
understanding and dialog management, that is the part of the project dedicated to understand
and negotiate users’ requests from their utterances (gathering input from the rest of the
DIRHA system, in particular the speech/ speaker recognition and the source localization
components, described in other deliverables) to implement them through the House
Automation system.
While in a few cases this job will simply be to execute the requested command and play a
confirmation prompt back, in most cases the Dialog Manager shall guide the user to complete
the needed formation through additional prompts and possibly confirmation requests for the
most important functions.
Moreover, the Dialog Manager shall be able to handle more than one dialogue at the same
time, in case more users interact with the system from distinct positions in the house (i.e.
rooms) at the same time on separated issues, keeping for each of them its state; such a
feature, taking advantage of the microphone network and the source localization resources
built in the DIRHA system, will allow handling one different dialog in each room of the
house; such dialogues will be handled by one single Concurrent Dialog Manager, handling
the House State as well in a coordinated way; this would potentially allow the
implementation of behaviours triggered by the joint state of the various dialogues going on at
the same time.
The document discusses the following components:
The Dialog Manager is in charge of conducting the interaction with the user coordinating the
other modules towards the goal of gathering from the user the information needed to
accomplish the requested task; multiple turns of dialog could be needed in case the user is not
providing enough information in its first utterance, or it is not fully recognized; in such a case
dedicated questions are asked, generating the proper prompts to obtain by the user the needed
information to operate the house automated devices. An introduction to Dialog Management
and a discussion of the approach followed within the DIRHA project can be found in Section
2. the reusable concurrent dialog manager engine developed in the project is described in
Section 4.
The Speech Understanding module is dedicated to parse the users’ utterances as returned by
the ASR at the purpose of extracting the information needed by the Dialog Manager;
typically two approaches can be followed to accomplish this task. The most established
solution is based on knowledge: defining suitable grammars allows parsing the utterance and
extracting the meaningful components. A grammar specifies the patterns of words accepted
by the recognizer: these constraints simplify the related semantic interpretation but require
specific knowledge in the design process; moreover, recognition can fail in case of
unexpected input. Hence, an alternative data-driven approach is being investigated: a
statistical learning procedure can be in principle more flexible and able to manage also
unlikely requests. A discussion of the Speech Understanding approach followed within the
DIRHA project can be found in Section 3.
The House State Keeper module is in charge of holding the Configuration of the specific
house to be handled (i.e. the House Profile) and the specific State of each and every item
contained in the House Profile (i.e. the House State), interacting with the House Automation

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 2

system. A discussion of the House+User Keeping approach followed within the DIRHA
project can be found in Section 5.
The Prompt Generator module is in charge of playing audio messages to the user;
depending on the need they could be pre-recorded voice messages, voice messages generated
by Text to Speech (TTS) system, or simple chimes. A brief discussion of the Prompt
Generation approach followed within the DIRHA project can be found in Section 6; however,
for the choice of each and every prompt/chime refer to Section 7, where one complete
dialogue example is discussed.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 3

2. DIRHA approach to Concurrent Dialogue Management

A dialogue management system is used to simulate the process of a dialogue. Dialogue
modelling is necessary for any type of dialogue, be it text-based, speech input or using other
modalities. In the age of user friendly interfaces, pleasant and easy interaction is an essential
aspect of the design of any system. Dialogue systems have specific requirements for this,
including adequate recovery from error. The Dialogue Manager should be able to identify
errors and adopt a strategy which recovers the dialogue.

2.1 Introduction to Dialog Management
Dialogue management techniques are particularly beneficial to systems using speech
recognition; spoken language dialogues require sophisticated modelling strategies, but these
in turn can provide a level of constraint that can mitigate the shortcomings of speech
recognition technology.
The Dialogue Manager is the heart of a spoken language system, as its main purpose is to
guide the user to provide the needed information. In order to reach this goal it coordinates the
activity of several components, controls the dialog flow, and communicates with external
subsystems. The Dialogue Manager may exploit many techniques which include discourse
analysis, knowledge database query, and system action prediction based on the discourse
context.

Main roles of Dialog Management
In general, the DM accepts as input the best estimate of the user's request, represented as a
semantic (multislot) frame produced by the Speech Recognition and Understanding modules,
and outputs system responses together with operative commands to the executive subsystems.
The system responses have to reflect the discourse context by maintaining the dialogue
history. Although the roles of the DM may depend on the type of task where it is involved, its
main roles include:

• Searching and providing query results by connecting to an external knowledge
database, based on the current input and the discourse context

• Asking further slots of information to submit an appropriate query
• Requesting to confirm unclear information slots and/or to rephrase if the user's input

is out-of-coverage.

Degrees of Initiative
A dialog consists of a sequence of user and system turns which usually depend on the
discourse context. The process of dialog can be viewed as an exchange of information in
which the initiative may shift between the user and the system.
The term initiative is related to who directs the progression of the dialog. In general, the
degrees of initiative in the spoken dialog system fall into one of the following strategies:

• System-initiative: The system has the initiative to guide the dialog at each step.
• User-initiative: The user takes a control of the dialogs, and the system responds to

whatever the user directs.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 4

• Mixed-initiative: The system has overall control of the dialogs. However, the users
can barge in and change the dialog direction.

In a system-initiative dialog, the system usually asks one or more questions to extract some
slots from the user step by step. After enough slots are filled, it can submit an appropriate
query to the external knowledge database.
In a user-initiative dialog, the user takes control of the dialog although the system may
sometimes ask confirmation questions if some slots are unclear.
In a mixed-initiative dialog, the system is supposed to control dialog, but the user can have
some flexibility at times to provide more information or to change the task.

A number of different approaches to the Dialogue management problem have been developed
to date in the community. They can be classified into two main categories; knowledge-based
dialog management, and data-driven dialog management.

Knowledge-based Dialog Management
Early dialog systems such as SUNDIAL [1] and ARISE [2] were designed by application
developers who have domain-specific knowledge. These systems are usually confined to both
highly structured tasks and system initiative dialogs, where a restricted and regularized
language set can be expected. In this knowledge-based approach the state behaviour of the
whole system is usually abstracted into some kind of “ control flow diagram”, i.e. a “flow
chart” (for the state-implicit approach, such as the VoiceXML [3]), or a “state chart” (for the
state-explicit approach) or other formalisms suitable to express imperative behaviour.
A reusable, domain-independent dialog engine manages the conversation by executing the
given dialog task specification, as in the case of the DIRHA Concurrent Dialog Manager.

The Dialog Manager knows and updates the “state” of the dialogue according to input
utterances, playing prompts and setting recognition contexts (e.g. grammars or language
models) according to the current state. In this way, for each state the needed prompts and
recognition contexts can be specified: the advantage is that the Speech Recognition and
Understanding modules are requested to recognize against smaller vocabularies (e.g.
containing the set of utterances that are allowed in that state only) and this potentially brings
high accuracy; conversely, the disadvantage is that the dialog can become too constrained if
the dialog flow does not allow users to easily “jump” to different parts of the dialog; this
disadvantage can be overcome making the dialog definition more sophisticated, hence more
complex.

This approach is often used for rapid prototyping of dialog systems for strong-typed
interactions with clearly-defined structures and goals [4]. This approach has also been
deployed in many practical applications because of its simplicity.

Data-Driven Dialog Management
More recently, the research community for Dialogue management has exploited the benefits
of data driven approaches to Speech Recognition and Natural Language Understanding.
Although a data-driven approach requires time consuming data annotation, the training is
done automatically and requires little human supervision. In addition, new systems can be
developed at only the cost of collecting new data for moving to a new domain; this requires
less time and effort than the knowledge-based approach.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 5

The behaviour of such systems is abstracted by a “data flow” or other formalism suitable to
express declarative behaviour: a production system (either forward or backward chaining) is
usually derived from the data flow network able to plan and execute the task of gathering all
the needed information.

The advantage of such an approach is that the flow of dialog needs not to be designed in
advance, being it automatically determined by the production system; the disadvantages are
that the ASR must recognize larger vocabularies, being it exposed to the whole set of
information for every turn of dialog, yielding potentially lower accuracies; moreover, the data
flow network and the consequent production systems can become complex when the task to
be accomplished becomes more articulated.

Practical deployment of Data-Driven based dialog systems has encountered several obstacles
[5]. For example, the optimized policy may remove control from application developers and
the refinement of the dialog control is difficult. These are serious problems because the
developers should have the opportunity to easily control the dialog flow in practical systems.
For example, there are some studies on how to mix traditional knowledge-based Dialogue
Manager design with Data-Driven based DM to reflect domain dependent business rules and
to reduce the large policy space [6] [7]. However, this approach still needs improvement
before it can be applied to developing practical dialog systems.

Support for Multimodality

In more recent years, as voice only systems have been replaced by multimodal ones (e.g.
systems able to react to both voice and other “modes”, such as keyboards, remote controls,
gestures, …) the State Based approach has been more widely adopted for its versatility; this is
the case of SALT1 by Microsoft, CIMA (adopted in DICIT) [28], etc.

Among such approach the maximal versatility is given by the “state explicit” approach. This
is the approach adopted in DIRHA.

2.2 Design choices in the DIRHA Dialog Management
The DIRHA Dialog Manager will be state based and, precisely, state-explicit; as briefly
discussed in the previous section this choice can potentially yield the highest accuracy in the
voice-related processing, as it allows directing the ASR and possibly other DIRHA
subsystems according to the particular state assumed the dialog over time.

Such a flexibility will play a crucial role in DIRHA, as more than one dialog could take place
in the same house (i.e. one per each room) and potentially dialogs could interact one with the
other.

As anticipated in the previous discussion, together with the advantage of versatility and
accuracy, the state based approach has the disadvantage of potentially needing a complex
state design to provide enough flexibility in the user experience: in order to help cope with
the dialog complexity, a powerful formalism has been chosen to design the dialog State
Machines: the Harel’s State Charts [29] defined in the late 70s: such a formalism has been
adopted in the State Charts “graphic language” of OMT and UML and has been taken by
W3C as the basis for the design of the SCXML language [30].

1 http://msdn.microsoft.com/en-us/library/ms994629.as px

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 6

SCXML and MIA-XML based State Charts

The main advantages of State Charts over more basic state machines approaches are the
following:

1. Allow concurrency (i.e. more threads of flow within a single state machine), with
possibility of synchronization.

2. Include data modelling (i.e. allowing to completely define the behaviour of a system,
not limited to the control part) and encapsulation of data, for modularity.

3. Allow state nesting, to improve the expressivity of the language (i.e. making the
dialogue definitions more compact).

At the time of writing the SCXML specification is still in the state of Last Call Working
Draft; however the last issue (Dec the 6th, 2012) will hopefully be finalized soon.

Due to the relative instability of the specification (the DIRHA implementation started around
M1, that is the beginning of 2012), and also to the planned kind of usage (somehow different
from the one envisioned by W3C), the DIRHA implementation does not fully cover the
specification, being somehow lightweight in some aspects and adding some original features;
however it covers the majority of the SCXML definition; for this reason we named it “MIA-
XML”

Section 4 of this document discusses in detail the MIA-XML formalism and Appendix 1 will
contain the reference manual; for the rest of the discussion here it’s enough to notice that the
one dialogue specification, expressed in MIA-XML is parsed and interpreted by the MIA-
XML executor which implements (i.e. runs) the dialogue state machine interacting with the
rest of the system (i.e. its “ecosystem”).

Unlike other approaches, the MIA-XML executor is not tied to any particular voice of other
technologies; this yields the maximal versatility in the kind of dialogues that can be
implemented (i.e. multimodal) and in the run-time environments where it will be deployed;
actually it is implemented as a C++ program, hence portable to virtually any computing
platform: from Linux to Windows, to MAC OS, iOS, Android, etc.
The technology-agnosticism of the MIA-XML executor is compensated by the adoption of
the most spread communication technology: TCP-IP and in particular HTTP; the state
machine being executed can exchange (i.e. receive and transmit) “events” with attached data
in form of POST payloads of HTTP to and from any node in the available IP network,
including other instances of the MIA-XML executor running other dialogues.

The “events” are sent in asynchronous way, that is: a POST payload sent from node A to
node B is acknowledged by B as soon as it is received; however this is not a feedback to the
requested action; when a reply to the action is to be sent from B, a new event is sent by B to
A in the same way; such a reply event is in turn acknowledged by A.

Acknowledges can be positive, with Error Code = 200 OK or negative, with some variants
of 40x code.
Such a choice provides a great flexibility in the implementation of whatever dialogue: the
only requirement is that the chosen technological engines are able to send or receive the
“MIA-XML events” through a TCP-IP network; the choice is also fully coherent with the
expected reaction times for a dialogue system: typical latencies within local TCP-IP networks
are in the range of milliseconds; in the next phases of the project, some experiments could
also be carried out geographically displacing some nodes of the system.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 7

Figure 2-1: shows a generic example of “ecosystem” for a dialog system based on the MIA-
XML executor; in the general case each and every module must implement both the http
server and client roles, as it needs to both send and receive “events” (i.e. POST payloads);
however the number of open channels shall be minimal.

For voice based systems one of the “event producers” will be the ASR+SU, while one of the
“event consumers” will be the TTS or a pre-recorded prompt player.

Figure 2-1: the mia_xml executor and its “ecosystem”

Possible Structure of Dialogue State Machines in DIRHA

The MIA-XML executor will be interfaced at least to the ASR (encapsulating most of the rest
of the DIRHA system, such as the Speech Understanding, Source Localization, Speaker
Recognition, ….), the Prompt Generator (i.e. TTS of prompt player), Home Automation
system; in the following, those subsystems will be referred to as the dialogue “ecosystem”.

The anatomy of the DIRHA dialogue running on the MIA-XML executor is one State Chart
with several parallels threads of execution sharing the house configuration and actual state;
in the following a possible set of parallel threads is reported:

1. one parallel thread of dialogue for each area of the house (i.e. a room, or a different space
partitioning) where a separate dialogue can take place: the space partitioning will depend
upon the Speech Localization algorithm being provided in DIRHA: speech input and
output coming and going to/from the MIA-XML executor and its ecosystem will be
tagged as belonging to a specific area (exceptions will be: unknown-source and all-
destinations)

2. one coordination thread handling speech input with unknown source and other house-
wide commands.

3. one thread updating the House state among the dialog and the real house: such a thread
will update the dialog internal state of the house upon reception of update messages sent
by the house automation system in case the state was changed outside the DIRHA

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 8

dialogue and will issue commands to the House automation system upon receiving a
command through the dialogue.

Other attribution of parallel threads to physical entities are possible, such as attributing one
parallel thread of dialogue to each user of the house, but this could be more difficult to
achieve; the actual decision to be implemented will be taken when finalizing the design of the
final DIRHA prototype.

Relationship among Dialog Manager, ASR and Speech Understanding

In the interaction between the (State Machine interpreted by the) Dialog Manager and the
ASR which encapsulates the SU module, there is a master-slave relationship: the former
keeps the current state of the dialogue and directs the latter towards a specific goal (sending a
specific activation event) while the latter, once activated upon a specific goal, waits for a user
utterance and aims to the requested goal. Once reached the requested goal, the ASR+SU
returns a number of (predefined) semantic slots to the master, sending a specific recognition
event.

The above sketched approach exploits the ability of the Dialog Manager to hold the current
state of the dialog, hence activating the ASR+SU over a specific subset of the whole
language domain (as an extreme example, when the dialog needs a simple “Yes/No” answer
it would be useless-and harmful to accept a vocabulary larger than “Yes”, “No” and a few
tens of synonyms.

The ability of the ASR+SU to take advantage of such an “advice” can lead to better accuracy
in the recognition; with this respect, a short introduction to the difference among the two
approaches to SU to be evaluated and compared in the first project phase are reported here;
such techniques will be discussed in deeper detail in Section 3.

Grammar-based: the utterance is recognized and semantically parsed by the ASR+SU using
one or more grammars according to the requested goal. Semantic slots could be defined so
that parsing rules could fill them when the rule is applied. This approach has the disadvantage
that each grammar must be designed by hand: furthermore, grammar based Understanding
would never be able to recognize an utterance if it was not handled by a grammar; the
advantage is that it fits well into the state-based approach as one set of grammars could be
passed by Dialog Manager to the ASR+SU for any specific turn of dialog. Furthermore, a
localization of the whole system for different languages would require the translation of the
grammars from one language to the other, a relatively easy task.

In the following, a simple example of Yes/No grammar is reported.

<?xml version="1.0" encoding="ISO-8859-1"?>
<grammar version="1.0" xml:lang="en-GB" root="comma nd">
 <rule id="command" scope="public">
 <one-of>
 <item> <ruleref uri="#yes"/> <tag>:var</tag> </item>
 <item> <ruleref uri="#no"/> <tag>:var</tag> < /item>
 </one-of>
 <tag><@command $var ></tag>
 </rule>
 <rule id="yes">
 <one-of>
 <item>yes</item>

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 9

 <item>correct</item>
 <item>right</item>
 <item>ok</item>
 <item>confirm</item>
 </one-of>
 <tag>return("true")</tag>
 </rule>
 <rule id="no">
 <one-of>
 <item>no</item>
 <item>incorrect</item>
 <item>wrong</item>
 <item>not ok</item>
 </one-of>
 <tag>return("false")</tag>
 </rule>
</grammar>

Notice the semantic slot named “command” filled with the only two possible values (i.e. true
and false) as side effect of parsing rules.

Data-driven: the utterance is recognized by the ASR using a large statistical Language
Model. The recognized string is then interpreted by the Speech Understanding component
that maps the word sequence into a frame-semantic representation of its meaning. The main
advantage of this technique is that an utterance can be interpreted even if it was not originally
contained in the training set or specifically covered by the handcrafted grammars. The
disadvantage of this approach is that it requires a large amount of semantically annotated
data; the localization of the system for another language would require to acquire and
annotate a complete training set for the new language.

As the two approaches have both advantages and disadvantages the project plan to investigate
both: for example, where the expected utterances will range over a narrow vocabulary (i.e.
the yes/no case described above) the grammar approach will be used; when the vocabularies
are larger (i.e. the initial menu, or the selection of a music song to be played) wider statistical
Language Models could be chosen. From the general Dialog Management architecture and
even design of the State Machine point of view, such a choice would be completely
transparent.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 10

3. Natural Language Understanding

The speech understanding component aims at extract the "meaning" from the recognized
utterance. A well-studied approach is based on the use of semantic frames: it has been
adopted in many spoken language processing tasks where various pieces of information need
to be collected from the user; as such, a frame-based system is limited to a restricted domain
and has a relatively small semantic space. This structure is usually modelled by templates
represented by semantic frames, whose frame elements (or slots) identify the requested
variables. The goal of a frame-based understanding system is to select the proper semantic
frame for the incoming utterance and fill from the sequence of recognized words its slots with
the actual values.

A popular solution is based on knowledge: defining suitable grammars allows parsing the
utterance and extracting the meaningful components. This authoring process requires
expertise and is usually expensive so alternative data-driven approaches are currently studied,
where a statistical learning procedure can in principle provide a more flexible and powerful
understanding. Indeed, the related field of natural language understanding mainly focus on
understanding general domain written texts and the corresponding semantics is defined in a
broader sense (e.g. using thematic roles). Hence, many constraints related to the applicative
domain should be introduced; although this in principle simplifies the problem, when dealing
with speech other variables should be taken into account such as recognitions errors,
spontaneous speech phenomena (disfluencies and not well-formed expressions) and out-of-
domain utterances. So, robustness is a major issue in speech understanding since the system
should handle any input, isolating in the recognized string accepted by the grammar or the
parser only the current concepts important for the given domain. At the same time, this
generalization feature may introduce ambiguities and reduce the accuracy.

In the DIRHA project both approaches are pursued with the intention to compare the safer
but limited use of grammars with the more generalized paradigm based on statistics. As better
explained in the dedicated section, the work on the data-driven approach is considered as
medium-term research activity and the resulting component will not be directly integrated in
the intermediate prototype.

3.1 Grammar-based approach
The knowledge-based approach adopting semantic grammars requires the exact matching of
input sentences to the designed rules: natural expressions or uncommon formulation cannot
be properly handled by the recognizer, leading to errors that often change the semantic
content of the hypothesis. As such, it is important to carefully design the grammars in order
to deal with these possible phenomena: specific fillers are able to model these less predictable
portions of the sentences, assuring the correct identification and classification of the relevant
semantic content. For example it is possible to take into account courtesy forms (e.g. please)
or synonyms (e.g. light, lamp, abat-jour). On the other hand, the resulting grammars cannot
be extremely large because in this case recognition performance usually drops. A mixed
solution could represent a feasible option. Indeed, an interesting feature of the FBK ASR
system is the capability to handle recursive transition networks: the arcs in the network can
be labelled not only by the words but also the names of other networks. These networks can

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 11

be compiled by mixing in an arbitrary manner grammars based on regular expressions and
statistical language models. This feature allows the designer to model directly common
expressions like “yes/no” as well as to handle more complex utterances thanks to statistical
language models. At the same time, the items belonging to a class (e. g. a device) can be
dynamically changed without a complete reload of the nets in the recognizer. Hence this
flexibility is also linked to a high efficiency in terms of computational load. As a result the
recognizer in the search path produces also the semantic parsing of the (best) string,
identifying the slots and their content.

Hence the adoption of the FBK recognizer for the DIRHA prototypes will make easier the
integration of the understanding component since the semantic slots are embedded as
enriched representation in the output. A parser is then required to properly compose and fill
the form for the Dialogue Manager, according to the exchange protocol under definition.

The preliminary evidence coming from the WOZ experiment indicates that the users tend to
prefer very short commands with well-structured grammars: this suggests that it is likely that
the grammar-based approach can provide a reliable framework for the considered domain.
Moreover, due to the daily usage of the DIRHA system, users will probably interact with a
restricted vocabulary, because of habits and learning effect.

The impact of recognition errors is currently under investigation; a specific set of grammars,
according to the dialogue designed and described in the next sections, will be used to
recognize and semantically parse the WOZ signals. A more general LM based on n-grams
and trained on similar text material is considered as reference.

Integration between ASR and the Dialog Manager

A dialogue description can be directly associated to a set of recognition grammars which will
be used by the speech recognizer, and which will contain some semantic labels that allow to
establish a direct relation between the dialogue concepts and the sub-grammars activated
during the recognition. From the speech recognition point of view, each concept is associated
both to a sub-grammar and to a semantic label. Every sub-grammar can be recursively
combined to form a bigger language model which will be used to recognize a complete
sentence. The output of the recognizer is not only a sequence of words, but also includes
information (basically the semantic labels) about the sub-grammars crossed during the
decoding step, and thus is a parse tree of the sentence. The resulting association between the
grammar identifier and a semantic concept provides directly an interpretation of the sentence,
at least in the restricted domain under analysis.
For instance, if we consider a sample sentence for controlling the light: “please switch on the
light in the living room” a properly combination of three sub-grammars (ACTION, CLASS,
ATTRIBUTE) may allow the recognition of:

please (ACTION(switch on)ACTION) the (CLASS (lig ht) CLASS) in
the (LOCATION (living room)LOCATION)

where the semantically relevant words can be extracted easily from the recognized string and
immediately referred to the required action associated to the label ACTION in a specific
room (associated to the label LOCATION).

In this way there is no need for a subsequent parser, because the relevant information is
already labelled, and only some text processing is required to properly edit the output in the
format expected by the DM.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 12

The application designer can easily build a system-initiative dialogue, simply by associating
to each concept a very strict grammar (e.g. a list of devices). On the other hand, a mixed
initiative dialogue can be designed by defining recognition grammars (possibly just one) able
to handle all of the concepts of the application. In case of multiple semantically relevant data
into a sentence, the corresponding concepts can be activated simultaneously.

Grammar design
Although a speech recognizer is able to manage very large vocabularies, the noisy
environment makes the recognition task extremely complex and can lead to very low
performance. Hand-crafted grammars introduce strong constrains in the hypotheses generated
by the recognizer, exploiting the designer knowledge of the domain.

In the Table 1 a minimal set of possible grammars (see §7 for details) is shown:

Grammar Semantic Concept Example

keyword dirha, aladdin, dirha system, activate

complete

class
attribute
action
location

open the door
close the window
switch on the light
close the door of the kitchen
open the small window
switch off the light in the living-room

cancel confirm cancel, delete

location location
the door of the bathroom
the kitchen door

yesno confirm yes, no, that’s right

attribute attribute
the red lamp
the small one

Table 3.1 List of possible grammars

According to the dialog design, the required grammars should cover utterances comprising
the relevant semantic concepts. In the following the main grammars are described and
discussed using simple examples.
• Activation keyword: the grammar accepts the selected keyword (e.g. “Dirha listen to

me”), triggering a dialogue session; the grammar rejects any other user sentence (KWS
task). This modality represents the equivalent “push-to-talk” button in a typical spoken
dialog system: the system is listening but not reacting to generic speech, only a
predefined keyword actives a dialog session. The semantic concept is associated to the
grammar identifiers KW and REJECT. REJECT is modeled either by a very general
statistical language model or by an ad-hoc grammar (e.g. phone-loop).

please listen to me (REJECT(@rj)REJECT)

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 13

what time is it? (REJECT(@rj)REJECT)

dirha listen to me (KW(dirha_listen_to_me)KW)

• Location: the grammar accepts a location in order to identify the object to be controlled;
again, a filler can model parts of speech that are not semantically relevant. This modality
is used to select the desired object in case the implicit strategy (the default item in the
room specified by the user) cannot be applied. The semantic concept is associated to the
content of the grammar LOCATION.

the one of the kitchen
(FILLER(@rj)FILLER)

(LOCATION(the kitchen) LOCATION)

in the living-room in (LOCATION(the living-room) LOCATION)

• Confirmation: the grammar handles confirmations and rejections. The dialog asks for an
explicit confirmation in case of critical operation (e.g. opening of the main door) or low
confidence (e.g. uncertainties in the acoustic front-end). The user can also decide to
abandon the sessions or cancel the requested operation. In the example the grammar
CONFIRM comprises the two sub-grammars YESNO and CANCEL.

yes (CONFIRM((YESNO(yes)YESNO))CONFIRM)

cancel (CONFIRM((CANCEL(cancel)CANCEL))CONFIRM)

• Attribute: this grammar is used to specify or identify an object. In some cases it is
required to identify the device to be controlled again in case of ambiguous requests. Here
the relevant content is associated to the grammar ATTRIBUTE. FILLER represents an
auxiliary grammar able to match other parts of the sentence.

the small window
(FILLER(the)FILLER) (ATTRIBUTE(small)ATTRIBUTE)
(FILLER(window)FILLER)

the red one
(FILLER(the)FILLER) (ATTRIBUTE(red)ATTRIBUTE)

(FILLER(one)FILLER)

• Complete command: the grammar accepts a complete command sentence in which the
semantic concepts (class, action, location, attribute) are directly modeled by specific sub-
grammars. The general request contains all these relevant semantic concepts,
encapsulated by the grammars ACTION, CLASS, LOCATION. The optional value of
ATTRIBUTE can help the correct identification of the device.

open the door (ACTION(open)ACTION) (CLASS(the door)CLASS)

switch on the red light in the
kitchen

(ACTION(switch on)ACTION) the
(ATTRIBUTE(red)ATTRIBUTE) (CLASS(light)CLASS) in
(LOCATION(the kitchen)LOCATION)

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 14

These basic grammars can then also combined with other more general expressions or
parallel statistical language models in order to handle more natural expressions. The final
design will take into account the actual setup of the automatized home.

Evaluation
Usually performance is measured as Word Error Rate but a dialog system that uses grammars
to determining the requested actions the possible ASR errors have different impact: words
belonging to the embedded grammars are more relevant. From the dialog point of view a
decoded sentence is correct if the corresponding interpretation matches the actual intention of
the user. Therefore, beside WER, it is important to evaluate grammars using precision and
recall. As a result, the reference set has to be labelled with semantic tags in order to measure
the capability of the grammars to correctly (recognize and) classify the meaningful
information of the sentence. The transcription and semantic annotation of the WOZ data is
the basis for a first evaluation of the designed grammars and the comparison benchmark for
the investigated approaches.

3.2 Data-driven approach
This alternative component takes as input an utterance and returns as output a structured
interpretation that allow the Dialog Manager to fulfill the user request, or an exception if the
request cannot be interpreted.

To this aim, a solution based on semantic parsing of users’ requests has been designed and
implemented: a preliminary comparison with a traditional solution based on contextual
grammars has also been carried out.

A semantic parser maps a natural-language sentence into a formal representation of its
meaning. We use semantic role labeling (SRL), a widely used form of semantic
representation which identifies roles such as agent, patient, source, and destination.
Specifically, the implemented semantic parser transforms an Italian sentence into a frame-
semantic representation based on FrameNet. FrameNet is a lexical resource that groups
predicates in a hierarchy of structured concepts, known as “frames.” Each frame in the
lexicon in turn defines several named “roles” corresponding to aspects of that concept, e.g.,
participants in an event. Our parser extends Semafor2, an open source tool for automatic
analysis of the frame-semantic structure of English text developed at CMU. Semafor uses
WordNet3 and FrameNet4 as lexical and semantic resources.

During the first year of the project, we have focused on the implementation of the semantic
parser. Specifically, the following activities have been carried out. First, the tool and models
made available by the Semafor developers have been tested on English and the declared
performance has been confirmed on some dataset available from the SemEval 2007 and 2010
evaluation campaigns. Second, all the language-dependent parts present in the original source
code have been replaced with calls to MultiWordNet5, a resource that includes the Italian
WordNet, TextPro6, a suite of modular Natural Language Processing (NLP) tools for analysis

2 http://www.ark.cs.cmu/Semafor
3 http://wordnet.princeton.edu/
4 http://framenet.icsi.berkeley.edu
5 http://multiwordnet.fbk.eu
6 http://texpro.fbk.eu

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 15

of Italian and English texts, and the MaltParser, a dependency parser trained on the CCG-
TUT, a treebank for Italian based on Combinatory Categorial Grammar. Third, we used the
Evalita 2011 dataset to train and test Semafor on Italian data.

In addition, we performed an evaluation on sentences processed by the FBK ASR system in
order to be able to handle input with word errors and sentence segmentation errors. Finally,
we are extending the available training data to include sentences used in the DIRHA use
cases; to this purpose we have developed a specific annotation platform. In the remainder of
the section, we first describe the FrameNet and Semafor, then the porting to Italian and its
evaluation. Finally, we present the related work and the open issues.

Framenet
FrameNet [8, 16] is a lexical resource for English, based on frame semantics [15], that is
being created in the context of the Berkeley FrameNet project. Its aim is to collect the range
of semantic and syntactic combinatorial possibilities of each word in each of its senses
through the annotation of example sentences. The conceptual model is based on three main
elements:

• Semantic frames: Cognitive schemata or scenarios necessary to understand the
meaning of words. They describe situations, objects and events and the participants
involved in them (in our case the DIRHA system is the implicit agent) .

• Lexical units (LUs): Words, multiwords, idiomatic expressions evoking a frame.
• Frame elements (FEs): Semantic roles involved in the situation or event expressed by

a frame. They apply to all LUs in the same frame.

FrameNet 1.3, released in 2006, is comprised of more than 10,000 lexical units, 6,000 of
which are fully annotated, and nearly 800 semantic frames with hierarchical relations. An
essential element of the FrameNet database is the corpus-based evidence, i.e., every lexical
has to be instantiated by at least one example sentence. In FrameNet 1.3, more than 135,000
sentences have been manually annotated with frame information.

As an example, we report in Table 3.2 the FrameNet entry for the WEARING frame.

Table 3.2 Example of frame “wearing”

In the first row, the frame definition in natural language is reported, while the second
includes the list of the core frame elements. The third row contains part of the LU list

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 16

including all frame-evoking predicates, while in the fourth a few example sentences are
reported. All LUs are printed in bold, while the phrases bearing a FE label are reported
between square brackets, followed by the role label.

In the remainder of this article, we call frame semantic annotation the annotation of sentences
with both frame and FE (or role) information, as performed by frame-semantic parsers (e.g.
[10] and [12]). The sub-task of assigning a frame label to a lexical unit in a sentence is called
frame identification. This concerns both lexical units that are listed in FrameNet, the so-
called seen LUs, and those that are not present in the resource, the unseen LUs. When frame
identification is applied to unseen LUs, and leads to the acquisition of new LUs, it is also
known as LU induction [23].

The second resource we take into account in this work is Wikipedia, the largest online
repository of encyclopedic knowledge. At the moment of writing, there are 20 million articles
in 282 languages (over 3.82 million in English alone) written collaboratively by
approximately 100,000 regularly active contributors around the world. This makes Wikipedia
a reliable source of knowledge both for Internet users and researchers.

Semafor
Semafor [13, 14] is a state-of-the-art open source Java application developed at CMU that
transforms an English sentence into a frame-semantic representation in a three-step process.

First, Semafor identifies words that evoke FrameNet frames, second, selects frames for them,
and, finally, locates the arguments for each frame. The frame-semantic parsing is cast as a
structure prediction problem. The system uses two feature-based, discriminative probabilistic
(log-linear) models, one with latent variables to permit disambiguation of new predicate
words. The parser is demonstrated to significantly outperform previously published results
and is released for public use under the GPL license.

Semafor preprocesses sentences with a standard set of annotations: POS tags from MXPOST
[24] and dependency parses from the MST parser [22] since manual syntactic parses are not
available for most of the FrameNet-annotated documents.
Semafor used WordNet for lemmatization and labeled each verb in the data as having
ACTIVE or PASSIVE voice, using code from the SRL system described by Johansson and
Nugues [19].

The probabilistic models have been trained and tested on SemEval'07 data. The system
improves the state of the art at each stage of processing, e.g., frame prediction, boundary
identification, and argument classification.

Our investigation started replacing the MST parser with the Stanford Parser [15], this
drastically reduced the memory footprint of the system without significantly changing the
performance on English annotation. This is the only changed we made to the English version
of the tool, from now on, we focus on the porting to Italian.

Semafor for Italian
Porting the system to Italian is a challenging task due to several reasons. First, some of the
resources employed do not have a counterpart in Italian, or they are not as rich as in English.
For example, the Evalita dataset is the only available training set for Italian. This training set
is quite limited if compared with the amount of annotated sentences available on FrameNet.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 17

Second, we had to replace the whole preprocessing pipeline. This point has a strong impact as
Semafor uses a set of heuristics based on the English grammar and the output of the English
preprocessing. These heuristics have been partially rewritten according to the Italian grammar
and the output of the Italian preprocessing.

Finally, the available software is monolithic, difficult to understand, and expensive to modify.
For example, many part of the code are duplicates, changing just few details. A software
reengineering process would be required, however for the moment we limited our action to
modify isolated part of the code.

TextPro
The Italian preprocessing is performed using TextPro, a state-of-the-art suite of modular NLP
tools for analysis of Italian and English texts. All tools have been designed so as to integrate
and reuse state of the art NLP components developed by researchers at FBK. TextPro is a
pipeline of processors wherein each stage accepts data from an initial input or from an output
of a previous stage, executes a specific task, and sends the resulting data to the next stage, or
to the output of the pipeline. The current version of the tool suite provides functions ranging
from tokenization to chunking and Named Entity Recognition. Specifically, we use
tokenization, lemmatization, and part-of-speech tagging.

In addition, we created some heuristics rules, for example, to detect active and passive verbs
by considering a list of transitive/intransitive verbs. If the auxiliary verb is to be and the verb
is intransitive then we classify the verb as passive; otherwise active.

Malt Parser
The parser used is the MaltParser7, a tool for data-driven dependency parsing that can be
used to induce a parsing model from treebank data and to parse new data using the induced
model. Malt-Parser was one of the top performing systems in the multilingual track of the
CoNLL shared tasks on dependency parsing in 2006 and 2007. In this project, we used the
parser trained on the CCG-TUT8, a treebank for Italian based on Combinatory Categorial
Grammar [20].

WordNet
Semafor uses JWNL (Java WordNet Library) to access the English WordNet9. In our porting,
we use MultiWordNet, a multilingual lexical database developed by researchers at FBK in
which the Italian WordNet is strictly aligned with Princeton WordNet 1.6 .

The Italian synsets are created in correspondence with the Princeton WordNet synsets,
whenever possible, and semantic relations are imported from the corresponding English
synsets. However, MultiWordNet is made available as MySql dump, this required the
conversion of the dump in a format compatible with the input format of JWNL. The
conversion scripts are made available in the MultiWordNet distribution, MultiWordNet is
licensed under a Creative Commons Attribution 3.0 Unported License.

7 http://www.maltparser.org/
8 http://www.di.unito.it/~tutreeb/
9 http://www.sourceforge.net/projects/jwordnet/

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 18

Evaluation
The evaluation has been performed on the FLaIT dataset, used at the Evalita 2011 Frame
Labeling over Italian Texts Task [9]. The training data made available by the task organizers
consists in the merging of two independently created datasets. The first has been annotated by
Tonelli at FBK [26]. It includes the annotation of 605 sentences (605 predicates and 1074
roles) at the syntactic and semantic level under the XML Tiger format also used by the Salsa
project, where the reference syntactic formalism of the annotation is derived by a
constituency-based parser.

The second dataset has been developed at the ILC in Pisa by Lenci and his colleagues[21]. It
consists of the ISST-TANL Corpus, a dependency-annotated corpus originating as a revision
of a subset of the Italian Syntactic-Semantic Treebank or ISST, enriched with Semantic
Frames under the XML Tiger format also used by the Salsa project. The whole corpus
contains 650 sentences with 1763 roles. The resulting training set thus includes 1255
sentences for about 38 frames. The total amount of roles completely annotated correspond to
2837 arguments. The test set has been obtained through the exploitation of the aligned
English-Italian Europarl section [10]. It consists of 318 sentences, again focusing on 36 of the
training set frames, for a total of 318 targets and 560 other arguments.

The evaluation is split in subtasks. Frame Detection (FD) aims at verifying the ability in
recognizing the true frame of an occurring predicate word, and to select it even against
possibly ambiguous lexical units. Boundary Detection (BD) and Argument Classification
(AC) require to locate and annotate all the semantic arguments of a frame, which are
explicitly realized in a sentence, given the marked lexical unit.

Tables 3, 4, and 5 show the results14 obtained on the FP, BD, and AC, respectively, by our
system (Semafor IT) and the 2 participants at the shared task (CELI and University of Roma,
Tor Vergata).

Table 3.3 Results of the Frame Detection task

Table 3.4 Results of the Boundary Detection (BD) task

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 19

Table 3.5 Results of the Argument Classification (AC) task

BD token and AC token results account for the number of individual tokens correctly
classified instead of the number of exact arguments.

These results show that the Semafor can be ported to Italian and the results are comparable
with the state of the art. However, the accuracy still needs to be improved.

We also extended the evaluation to be nearer to the DIRHA scenario, in which the sentences
to parse can present errors due to ASR. To this aim, we recorded some volunteers reading a
subset of the Evalita dataset.

The result consists in 189 sentences out of 318: the read speech has been then recognized
using a generic ASR trained on Parliament speech (see [27,28] for details) in order to
introduce typical recognition errors and evaluate the robustness of the forthcoming parser.
The resulting WER on this set is about 30%: on purpose the ASR system has not been tuned
in order to generate a large number of errors.

Table 3.6 Results of the Frame Detection task working on the output of ASR

Table 3.7 Results of the Argument Classification task working on the output of ASR

This evaluation cannot be performed using the official scorer as it is based on the assumption
that gold and system answers are aligned at token level, assumption clearly violated in the
output of a ASR system due to errors and missing punctuation marks. Consequently, we had
to rewrite a scorer that could keep into account all these problems. The new scorer does not
evaluate BD as text is not aligned at level of token, so we can only evaluate FD and AC.
These results are not available for the CELI and Tor Vergata systems. Table 6 and 7 show the
FD and AC results, respectively. These results correspond to the exact match, it is difficult to
obtain the token AC results due to the errors and misalignment issues introduced by the ASR.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 20

Details on the Speech Understanding Showcase
The first prototype is a Java application that integrates what described above. The application
can be accessed through a RESTful API and a command line interface. The input/output
format can be either XML or JSON. The main method takes as input a sentence and returns
as output the semantic representation of the sentence, namely, the recognized frames, the
evoking terms, and the roles involved.

Figure 3-1: Semantic parsing for an Italian DIRHA-like sentence

Figure 3-1 shows an example for the input sentence “accendi il forno per 10 minuti a 200
gradi” (turn the oven on at 200 degrees for 10 minutes). In the example, the system
recognizes that the term “accendi” (turn on) evokes the frame Change operational state, that
requires an Agent, the entity who changes the operational state of a Device (the oven) and the
Place (not found) in which the device is put into or out of operation. In the given command,
the Agent (usually the user) and Place (the kitchen) are implicit and can be recognized by
other modules of the architecture, or with simple reasoning based on the output of the other
roles and using a description of the environment. For instance, knowing that the oven is
placed in the kitchen, we can recognize the role Place. In this case, Non-core roles Degree
(200 degrees) and Time (10 minutes) are necessary to execute the command. The system
returns only the roles for which it has high confidence, if a compulsory role to execute the
command is not found in the input sentence the system could explicit ask the user to specify
it.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 21

Figure 3-2: The annotation interface that allows users to annotate frames

The Annotation tool
In order to annotate utterances collected within the Dirha use cases we developed a specific
tool.

The annotation tool is a PHP application that allows users to annotate new sentences
according to FrameNet 1.5. Sentences are first loaded into a database (MySql) and then made
available for annotation through a Web-based interface. The user must follow a two-step
annotation process. First, they are asked to select the frame evoked in the considered
sentence. Second, they have to specify the lexical unit that evoked the frame selected in the
first step and to annotate all the explicit semantic roles by selecting the token(s) and assigning
the appropriate frame’s roles. For example, Figure 3-2 shows a set of sentences, from a
combo box the user can select the frame. In the example, the first 3 sentences have been
already annotated; the assigned frame label is shown after the sentence between squared
parentheses. The lexical unit is underlined and the different frame’s roles are highlighted with
different colours. Figure 3-3 shows a sentence annotated with the lexical unit and semantic
roles. Words to be annotated are selected through a check button shown below the words, and
the role is selected by means of a combo box shown below the words that lists all possible
frame roles. If the annotation must be extended to the following word the users can simply
click the arrow button and the previous annotation is extended. The annotations are saved
into the database and can be converted to different annotation format (e.g., XML Tiger
format).

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 22

Figure 3-3: The annotation interface that allows users to annotate lexical units and semantic roles

Related Work
First, we consider the 2 participants to the Evalita task. CELI parses the input sentences with
a legacy parser [25] that uses a combination of dependency based rules (e.g.,
subcategorization patterns) and machine learning techniques, based on Markov Logic
Networks. Two systems are presented. CELI WT uses a set of hand coded rules for SRL,
while CELI NT only relies on learned rules. University of Roma, Tor Vergata proposed two
kernel-based systems that use SVM as learning algorithm. Specifically, TV SVM-SPTK
extends the standard tree kernels formulation by embedding a corpus-driven lexical similarity
metrics between terminal nodes (i.e. words in the leaves). TV SVMHMM combines
discriminative and generative models. It cast BD and AC in a labelling task, without counting
on any information about grammatical dependencies and the parse tree. SRL has been also
used in the context of Spoken Dialog Systems within the project Luna, in which a machine
learning approach based on frame semantics obtained successful results [11]. Here, a
FrameNet-based parser both for English written texts and for Italian dialog utterances has
been designed and evaluated. The results show that errors on dialog data do not severely hurt
performance.

Also, a small set of FrameNet-like manual annotations is enough for realizing accurate
Semantic Role Labelling on the target domains of typical Dialog Systems. [16] present an
extension of the standard evaluation metrics for SRL in order to be able to handle speech
recognition output with word errors and sentence segmentation errors. They propose metrics
based on word alignments and bags of relations, and compare their results on the output of
several SRL systems on broadcast news and conversations of the OntoNotes corpus. They
evaluate the relation between the results on the subtasks that lead to SRL, including ASR,
part-of-speech tagging or sentence segmentation. The analysis of the performance of
retrained systems shows that the errors of at different levels (i.e., part-of-speech tagging,
dependency parsing and SRL) are strongly correlated. They conclude that errors are due to
the fact that systems are trained on reference data and suggest that one possible solution for
improving SRL on speech could be to retrain systems on ASR output or modify them to
process word lattices.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 23

Discussion on preliminary results

Besides the standard approach based on hand-crafted grammars, we have developed a
Semantic Role Labelling system for Italian starting from a pool of existing resources and
tools for syntactic and semantic analysis of English and Italian. In spite of the complexity of
the task, we have implemented a system that can be compared with the state of the art:
specifically, our system if compared with the participants at Evalita 2011 scores second. We
have also released a spoken version of the Evalita dataset and a tool for SRL annotation.
However, several issues have to be addressed to reach the results obtained by the best system.
We think that the main weakness is the performance of the parser that strongly influences the
boundary detection and consequently propagates the errors up to the argument classification
phase. Typically, these issues are alleviated by long list of heuristics. We limit these
processes to supply information not returned by the parser, not to fix frequent mistakes. All
these problems are further amplified when we work on the output of the ASR system. Indeed
we also have some errors at word level and, hence, it is more difficult to understand the
causes of the misclassifications. In order to improve the performance we need to run an error
analysis on the system with and without ASR. However, since the DIRHA domain is more
limited, we are confident to have a good coverage in terms of language model (either with
handcrafted grammars or statistical) so it is expected to reduce the parser errors.

Finally, in the targeted scenario the end-user is exposed continuously to the system and
probably will tend to adapt his/her interaction, progressively selecting only a few ways to
reach the goal in a minimal number of turns.

Furthermore, since houses are different from each other (see Section 5 for the discussion on
House+User profile), there is the need to adapt the recognition/understanding domain
accordingly. To this purpose, the grammar based approach seems able to accommodate this
requirement in an easier way, due to its higher modularity.

On the other hand the alternative approach based on SRL generalizes better and in the long-
term can guarantee a good coverage of the current list of services without requiring an
explicit profiling procedure. A comparison carried out on real interactions in a sufficiently
long period will clarify the reasonable trade-off between performance and efforts in the user
profiling/customization.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 24

4. Design of the State Based Concurrent Dialog Manager

The Concurrent Dialog Manager implemented within the DIRHA project is an interpreter of
concurrent State Charts expressed with the MIA-XML language, a specialization of XML.

Such an interpreter is being developed as a C++ program (Version 1.0 has been released at
M12 and is being used in the Dialog Showcase) initially running on the Windows OS;
however it is easily portable to other OS, such as Linux, the chosen integration OS for
DIRHA.

The interpreter, in the following referred to as the MIA-XML executor works in 3 passes:

1. parsing of the input MIA-XML specification: during this pass the language syntax is
checked and the internal data structures are loaded.

2. semantic (post-parse) analysis: during this pass the internal data structures are cross-
checked in order to verify the semantic consistence of the State Chart specification; as
an example, for every transition, the “target” state is searched for; in case it is not
defined, a semantic error is flagged; same occurs for expressions: each and every used
variable must be defined in the data model; one important by product of this analysis
is that each and every element contained in the specification (i.e. states, transitions,
variables, events, …) are directly indexed by the element that uses it; in this way the
execution of the state machine will be very efficient, as if the state machine was
compiled, instead of interpreted.

3. execution; this pass is iterated over and over again until the program is stopped; at
each iteration the actual Configuration Set (i.e. the set of active states) is evaluated
and the future Configuration Set is calculated, to prepare the next iteration. A major
figure of merit for this kind of interpreters is the iteration time. i.e. the time taken to
evaluate the Configuration Set; thanks to the heavy indexing performed in pass 2 the
DIRHA MIA-XML executor is capable of running 1k to 10K iterations per second on
complex to medium complexity state charts on laptop-desktop PCs running Windows;
furthermore, such a figure grows linearly with the number of states in the
Configuration Set, with no dependency upon the total number of steps or other sizes
in the State Machine.

4.1 Introduction to the MIA-XML language
With the term MIA-XML we denote the subset of the SCXML language supported by the
Concurrent Dialog Manager implemented within the DIRHA project.

The SCXML language is being defined by the W3C Consortium [30]; as of end of 2012 it is
now in its Dorking Draft stage and the Last Call for changes has just deadlined in Jan the
13th 2013.

The MIA-XML language is mainly obtained by subtraction of a few elements from the
SCXML language; however some additions have also been done; such changes have been
introduced at the purpose of needing a lighter weighted executor, suitable to be ported to
lower power devices.

In the following, the MIA-XML language is introduced; part of the concepts come from the
SCXML material, released by W3C (see [30]); however, since differences have been

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 25

introduced in several places, a full description of the MIA-XML language is reported, for
sake of completeness.

The most basic state machine concepts are State, Transition and Event. Each state contains a
set of transitions that define how it reacts to events. Events can be generated by the state
machine itself or by external entities. In a traditional state machine, the machine is always in
a single state. This state is called the active state. When an event occurs, the state machine
checks the transitions that are defined in the active state. If it finds one that matches the
event, it moves from the active state to the state specified by the transition (called the "target"
of the transition.) Thus the target state becomes the new active state.

The Harel [5] state notation defines several extensions to these basic notions. First of all, the
state machine may take actions (Executable Contents) while taking transitions. Specifically,
each state may contain both ‘onentry’ and ‘onexit’ actions.

Transitions may also contain actions. If a state machine takes transition T from state s1 to
state s2, it first performs the onexit actions in s1, then the actions in T, then the onentry
actions in s2. Secondly, in addition to the ‘event’ attribute that specifies the event(s) that can
trigger it, transitions also have a ‘cond’ attribute. If a transition has both 'event’ and ‘cond’
attributes, it will be selected only if an event is raised whose name matches the 'event'
attribute and the ‘cond’ condition evaluates to true. If the ‘event’ attribute is missing, the
transition is taken whenever the ‘cond’ evaluates to true. If more than one transition matches,
the first one in document order will be taken. Thus, in the following example, the system will
transition to st1 when event evt1 occurs if x is equal to 1, but will transition to s2 if event e
occurs and x is not equal to 1; finally it will go to s3 if any other event occurs.

<state id=st0">
 <transition event="evt1" cond="x==1" target="st1 "/>
 <transition event="evt1" target="st2"/>
 <transition event="*" target="st3"/>
</state>

Compound States
One of the most powerful concepts in Harel notation is the idea that states may have their
internal structure. In particular, a <state> element may contain nested <state> elements. Such
a state is called a compound state (called the parent state), while the nested elements are child
states. Children states may in turn have nested children and the nesting may proceed to any
depth. At the end of this nesting structure we will reach a state which does not contain any
child states: such a state is called an atomic state. When a compound state is active, one and
only one of its child states is active. Conversely, when a child state is active, all its parent
states must be active too. Thus at any point we have a set of active states, containing an
atomic state and all of its ancestors. (We will see in the “Parallel States” section that multiple
atomic states can be active at the same time).

Compound states also affect how transitions are selected. When looking for transitions, the
state machine first looks in the most deeply nested active state(s), i.e., in the atomic state(s).
If no transitions match in the atomic state, the state machine will look in its parent state, then
in the parent's parent, etc. Thus transitions in ancestor states serve as defaults that will be
taken if no transition matches in a descendant state. If no transition matches in any state, the
event is discarded.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 26

Parallel States
The <parallel> element represents a state whose children execute in parallel. Like <state>, the
<parallel> element contains <onentry>, <onexit>, <transition>, and <state> or <parallel>
children. However, the semantics of <parallel> is different. When a <state> is active, exactly
one of its children is active. When a <parallel> element is active, all of its children are active
at the same time. Specifically, when the state machine enters the parent <parallel> state, it
also enters each child state. The children states execute in parallel in the sense that any event
that is processed is processed in each child state independently, and each child state may take
a different transition in response to the event, including ignoring it.

Transitions within each individual child element operate normally. However whenever a
transition is taken with a target outside the <parallel> element, the <parallel> element and all
of its child elements are exited and the corresponding <onexit> handlers are executed. The
handlers for the child elements execute first, in document order, followed by those of the
parent <parallel> element, followed by an action expression in the <transition> element, and
then the <onentry> handlers in the "target" state.

On the other hand a <parallel> element is exited if and only if all of its child states are in a
final state, as illustrated in the following example: parallel state 'Par' has two children S1 and
S2. Suppose a transition takes S1's child S12 as a target. Upon this transition, the state
machine, in addition to entering S1 and S12, will also enter S1 parallel sibling S2 and its
initial state S21. Once the transition has been taken, Par, S1, S2, S12, and S2Ini will all be
active. If event 'e1' occurs, it will cause S12 to transition to S1Fin, and S2Ini to transition to
S22. At this point, S1 is in a final state, but S2 is still active. Now suppose event 'e2' occurs.
This will cause S22 to transition to S2Fin. Now, since all of Par children are now in final
states the entire Par region is exited.

<parallel id="Par">
 <transition event="evtent1" target="someOtherSt ate"/>
 <state id="S1" initial="S1Ini">
 <state id="S1Ini">
 <transition event="e4" target="S12"/>
 </state>
 <state id="S12">
 <transition event="e1" target="S1Final" />
 </state>
 <final id="S1Fin"/>
 </state>
 <state id="S2" initial="S2Ini">
 <state id=S2Ini">
 <transition event="e1" target="S22"/>
 </state>
 <state id="S22">
 <transition event="e2" target="S2Fin/>
 </state>
 <final id="S2Fin"/>
 </state>
</parallel>

Note that the semantics of the <parallel> does mean that it must be implemented via multiple
threads or truly concurrent processing: the children of <parallel> execute in parallel in the

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 27

sense that they are all simultaneously active and each one independently selects transitions
for any event that is received. Hence, the parallel children process the event in a defined,
serial (i.e. document) order, so no conflicts or race conditions can occur.

Initial States
In the presence of compound states, transitions no longer simply move from the current
active state to a new active state, but from one set of active states to another. If the target of a
transition is an atomic state, the state machine will enter not only the atomic state, but also
any of its ancestor states that are not already active. Conversely, a transition may take a
compound state as its target; in such a case one of the compound state's children must also
become active, but the transition does not specify which one. In this case we look at the target
state's <initial> child that specifies the state's default initial state, which is, the child state to
enter if the transition does not specify one. (If the default initial state is itself compound, the
state machine will also enter its default initial state, and so on recursively until it reaches an
atomic state). The presence of default initial states provides a form of encapsulation, since a
transition may select a compound state as its target without knowing its internal substate
structure.

The default initial state of a compound state may also be specified via the 'initial' attribute.
The only difference between the <initial> element and the 'initial' attribute is that the <initial>
element contains a <transition> element which may in turn contain executable content which
will be executed before the default state is entered. If the 'initial' attribute is specified instead,
the specified state will be entered, but no executable content will be executed. (If neither the
<initial> child nor the 'initial' element is specified, the default initial state is the first child
state in document order). As an example, suppose that parent state S contains child states S1
and S2 in that order. If S specifies S1 as its default initial state via the 'initial' attribute (or
fails to specify any initial state), then any transition that specifies S as its target will result in
the state machine entering S1 as well as S. In this case, the result is exactly the same as if the
transition had taken S1 as its target. If, on the other hand, S specifies S1 as its default initial
state via an <initial> element containing a <transition> with S1 as its target, the <transition>
can contain executable content which will execute before the default entry into S1. In this
case, there is a difference between a transition that takes S as its target and one that takes S1
as its target. In the former case, but not in the latter, the executable content inside the
<initial> transition will be executed.

History States
A compound state may also have history states as children: <history> allows achieving
pause and resume semantics in compound states: before the state machine exits a compound
state, it records the state's active descendants of the state. If the 'type' attribute of the
<history> state is set to "deep", the state machine saves the state's full active descendant
configuration, down to the atomic descendant(s). If 'type' is set to "shallow", the state
machine remembers only which immediate child was active. After that, if a transition takes a
<history> child of the state as its target, the state machine re-enters not only the parent
compound state but also the state(s) in the saved configuration. Thus a transition with a deep
history state as its target returns to exactly where the state was when it was last exited, while
a transition with a shallow history state as a target re-enters the previously active child state,
but will enter the default initial state of the child (if the child is itself compound.)

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 28

Transitions
As anticipated in the previous sections, transitions allow to leave one state (including
compound ones) and enter another one: in case of a transition located in a compound state,
the 'type' attribute is significant.

The behaviour of a transition with 'type' of "external" (the default) is defined in terms of the
transition's source state (i.e. the state containing the transition), the transition's target state(s),
and the Least Common Compound Ancestor (LCCA) of the source and target states (the
LCCA of 2 states is the closest compound state that is an ancestor of both the states,
including top level <mia_xml> tag in case no common ancestor is found).

When a transition is taken, the state machine will exit all active states that are proper
descendants of the LCCA, starting with the innermost one(s) and working up to the
immediate descendant(s) of the LCCA. Then the state machine enters the target state(s), plus
any states that are between it and the LCCA, starting with the outermost one (i.e., the
immediate descendant of the LCCA) and working down to the target state(s).

As states are exited, their <onexit> handlers are executed. Then the executable content in the
transition is executed, followed by the <onentry> handlers of the states that are entered. If the
target state(s) of the transition is not atomic, the state machine will enter their default initial
states recursively until it reaches an atomic state(s).

In the example below, assume that state s11 is active when event 'e' occurs. The source of the
transition is state s1, its target is state s21, and the LCCA is state S. When the transition is
taken, first state S11 is exited, then state s1, then state s2 is entered, then state s21. Note that
the LCCA S is neither entered nor exited.

<state id="S" initial="s1">
 <state id="s1" initial="s11">
 <onexit>
 <log expr="'leaving s1'"/>
 </onexit>
 <state id="s11">
 <onexit>
 <log expr="'leaving s11'"/>
 </onexit>
 </state>
 <transition event="e" target="s21">
 <log expr="'executing transition'"/>
 </transition>
 </state>
 <state id="s2" initial="s21">
 <state id="s21">
 <onentry>
 <log expr="'entering s21'"/>
 </onentry>
 </state>
 <onentry>
 <log expr="'entering s2'"/>
 </onentry>
 </state>
 <onentry>
 <log expr="'entering S'"/>
 <onentry>

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 29

 <onexit>
 <log expr="'leaving S'"/>
 <onexit>
</state>

The sequence of execution of executable contents will be:

leaving s11; leaving s1; executing transition; ente ring s2; entering s21

The behaviour of transitions with 'type' of "internal" is identical, except in the case of a
transition whose source state is a compound state and whose target(s) is a descendant of the
source. In such a case, an internal transition will not exit and re-enter its source state, while
an external one will, as shown in the example below.

<state id="S" initial="s1">
 <state id="s1" initial="s11">
 <onentry>
 <log expr="entering S1"/>
 </onentry>
 <onexit>
 <log expr="'leaving s1'"/>
 </onexit>
 <state id="s11">
 <onentry>
 <log expr="entering s11"/>
 </onentry>
 <onexit>
 <log expr="'leaving s11'"/>
 </onexit>
 </state>
 <transition event="e" target="s11" type="inter nal">
 <log expr="'executing transition'"/>
 </transition>
 </state>

The sequence of execution of executable contents will be:

leaving s11; executing transition; entering s11

If transition type was “excternal (default) the sequence of execution of was:

leaving s11; leaving s1; executing transition; ente ring s1; entering s11

If the 'target' on a <transition> is omitted, then the value of 'type' does not have any effect and
taking the transition does not change the state configuration but does invoke the executable
content that is included in the transition. Note that this is different from a <transition> whose
'target' is its source state. In such a case, the state is exited and reentered, triggering execution
of its <onentry> and <onexit> executable content according to the type of the transition.

As data can be sent along with events, Transition can store such data into the datamodel,
through the <param> tag; fore ach item of data received along with the event, all the ones
dealt with in the <param> tags are stored in the relative data tags; received data not

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 30

mentioned in any <param> tag are just discarded; likewise, any <param> tag mentioned data
not received in the event is just neglected.

4.2 The Core Constructs of the MIA-XML language
In the following, a brief introduction the tags of the MIA-XML language is reported; see
Appendix 1 for an exhaustive definition of each and every tag.

<mia_xml>
The top-level wrapper element, carrying version information. The actual state machine
consists of its children. Note that only one of the children is active at any one time.

<state>
Holds the representation of a state.

<parallel>
The <parallel> element encapsulates a set of child states which are simultaneously active
when the parent element is active.

<transition>
Transitions between states are triggered by events and conditioned via guard conditions. They
may contain executable content, which is executed when the transition is taken.

<initial>
This element represents the default initial state for a complex <state> element (i.e. one one
containing child <state> or <parallel> elements.

<final>
This element represents one final state for a complex <state> element (i.e. one one containing
child <state> or <parallel> elements. When the state machine reaches one <final> child of an
<mia_xml> element, it terminates execution.

<onentry>
A wrapper element containing executable content to be executed when the state is entered.

<onexit>
A wrapper element containing executable content to be executed when the state is exited.

<history>
The <history> pseudo-state allows allows a state machine to remember its state configuration.
A <transition> taking the <history> state as its target will revert the state machine to this
recorded configuration.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 31

4.3 Executable Content in the MIA-XML language
Executable content allows the State Machine to do things, such as modify its data model
and/or interact with external entities. Executable content consists of actions that are
performed as part of taking transitions. In particular, executable content occurs inside
<onentry> and <onexit> elements as well as inside transitions. Notice that targetless
transitions may contain executable content as well; this would allow one state to do things
simply because it is active. When the state machine takes a transition, it executes the
<onexit> executable content in the states it is leaving, followed by the content in the
transition, followed by the <onentry> content in the states it is entering.

Wherever executable content is permitted, an arbitrary number of elements may occur. Such
a sequence of elements of executable content is called a block. For example, if transition t
takes the state machine from atomic state S1 to atomic state S2, there are three blocks of
executable content executed: the one in the <onexit> handler of S1, the one inside T, and the
one inside the <onentry> handler of S2. The MIA-XML executor executes the elements of a
block in document order. If the processing of an element causes an error to be raised, the
exeecutor stops processing the remaining elements of the block, while the execution of other
blocks of executable content is not affected.

<log>
<log> allows an application to generate a logging or debug message useful in the
development of the State Machine at applicative level.

<assign>
The <assign> element is used to modify the data model.

<raise>
The <raise> element raises an event in the current MIA-XML session. Note that the event
will not be processed until the current block of executable content has completed and all
events that are already in the internal event queue have been processed. For example, suppose
the <raise> element occurs first in the <onentry> handler of state S followed by executable
content elements ec1 and ec2. If event e1 is already in the internal event queue when S is
entered, the event generated by <raise> will not be processed until ec1 and ec2 have finished
execution and e1 has been processed.

<if> <elseif> <else>
<if> is a container for conditionally executed elements.

<elseif> is an empty element that partitions the content of an <if>, and provides a condition
that determines whether the partition is executed.

<else> is an empty element that partitions the content of an <if>. It is equivalent to an
<elseif> with a "cond" that always evaluates to true.

The following example shows the usage of the if, elseif and else tags:

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 32

<if cond="cond1">
 <!-- selected when "cond1" is true -->
<elseif cond="cond2"/>
 <!-- selected when "cond1" is false and "cond2" i s true -->
<elseif cond="cond3"/>
 <!-- selected when "cond1" and "cond2" are false and "cond3" is true -->
<else/>
 <!-- selected when "cond1", "cond2", and "cond3" are false -->
</if>

<foreach>
The <foreach> element allows a State Chart application to iterate through a collection in the
data model and to execute the actions contained within it for each item in the collection.

The MIA-XML executor acts as if it has made a shallow copy of the collection produced by
the evaluation of 'array' (modifications to the collection during the execution of <foreach>
shall affect the iteration behaviour). The executor starts with the first item in the collection
and proceeds to the last item in the iteration order that is defined for the collection. For each
item in turn, the processor assigns it to the item variable. After making the assignment, the
executor evaluates its child executable content. It then proceeds to the next item in iteration
order. If the evaluation of any child element causes an error, the processor ceases execution
of the <foreach> element and the block that contains it. Note that there is no break
functionality to interrupt <foreach>, however, using targetless and/or eventless transitions
sophisticated iterative behavior can be achieved.

4.4 Data modelling in the MIA-XML language
The Data Model offers the capability of storing, reading, and modifying a set of data that is
internal to the state machine. In addition to the underlying data structure, the data model
defines a set of expressions. These expressions are used to refer to specific locations in the
data model, to compute values to assign to those locations, and to evaluate Boolean
conditions. Finally, the data model includes a set of system variables which are automatically
maintained by the MIA-XML executor.

The data model is defined via the <datamodel> element, which contains zero or more <data>
elements, each of which defines a single data element and its type (i.e. number, the default, or
string) and optionally assigns an initial value to it. Values can then be updated via the
<assign> element. The<content:> and <param> elements can be used to incorporate data into
communications with external entities.

Data binding and scoping
There is a globally visible data model for the entire state machine. Specifically, the MIA-
XML executor allows any data element of that datamodel to be accessed from any state.

On the other hand, each and every <state> or <parallel> can have its own <datamodel> to
encapsulate data for its own and its substates; such private datamodels are initialized with
default values (if any) every time their owning <state> or <parallel> is entered.

The initial value specified by 'expr' is assigned to the data element even if the element already
has a non-null value every time the owning state is entered.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 33

Ordering dependencies <data> elements are possible and follow the document order.
Suppose, for example, that the declaration of element "a" precedes the declaration of element
"b" in a document. It can be assumed that "a" will be instantiated and have a value when the
declaration of "b" is executed. Therefore the "expr" in "b" can safely reference the value of
"a". Note that the data model can only modified by <assign>, <param> and <finalize>. In
particular, no means is defined for external entities to modify the data model. In this sense the
data model is local to the MIA-XML execution

<datamodel>
<datamodel> is a wrapper element which encapsulates any number of <data> elements, each
of which defines a single data object.

<data>
The <data> element is used to declare and populate portions of the datamodel.

<content>
A container element holding data to be passed to an external service: by means of <send> or
<invoke> tags. When evaluating the <content> element, if the 'expr' value expression is
present it is evaluated first and the result is taken as the <content> element. If the evaluation
of 'expr' produces an error, the empty string is used as the value of the <content> element.

<param>
The <param> tag provides a general way of identifying a key and a dynamically calculated
value which can be passed to an external service or included in an event. It can only used to
assign data received from an external service to data in the datamodel.

Expressions
Expressions are used to produce values to be used in assigning variables, i.e. data items. As
data items are either numerical or string typed, so are expressions.

For numerical expressions, the usual operators, i.e. +-*/%() have their usual meaning and any
arbitrary expression can be built; the following built-in constants and function are available:
Pi, e, exp(x), log(x), log10(x), sqrt(x), floor(x), ceil(x), abs(x), rand(), rand100(), fac(x),
int(x), dec(x), sin(x), cos(x), tan(x), aSin(x), aCos(x), aTan(x); the Active(x) function is also
provided, which takes a state ID as its argument and returns the time by which the state is
active since its last activation, if its argument is omitted, the current state is considered. Such
a function is useful to implement timers.

For string expressions, operator + is available, with its usual meaning of “string
concatenation”; the builtin function substr(str,pos,len) is available to extract a substring from
a string starting after the posth character of the string, for a length of len characters, or less if
the end of string comes first.

The type of the expression is provided by the type of the variable to assign; in case variables
(or constants) of the opposite type are used, type conversion is applied just after accessing it,
so:

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 34

1. if a string typed variable is accessed in a number expression its length in characters is
used instead

2. if a number variable is accessed in a string variable, its character representation is
used instead.

 In any case evaluation of expressions do not produce side effects.

Conditions
Conditions are used inside the 'cond' attribute of <transition>, <if> and <elseif>.

They are in the form of Boolean expressions combining the basic Boolean term
[notOp]{lhs pred rhs}, with optional notOp is ~ and lhs and rhs expressions and pred
belonging to { ==, !=, >, <, >=, <= } (actually: ==, != , <, > ≥ ≤) combined at
any complexity through the &&, ||, ^^ operators, (actually &&, ||, ^^)and braces,
used to specify precedence at the boolean level, in order to distinguish them from the
ordinary braces, used with arithmetic meaning inside lhs and rhs expressions.

By default the 6 predicates operate with numeric behaviour, i.e. a > b evaluates to true if a is
greater than b; however they can also be explicitly requested to work with string behaviour
adding a $ (dollar sign) on the side that has to take the string behaviour, i.e. a $>$ b is true if
a, taken as string comes after b in alphabetical ordering, with b taken as a string; in case a or
b variables were not strings they are converted using the rules listed in the previous section,
about Expressions.

If the evaluation of a condition causes an error, the false value is returned. The 'In(x)'
predicate is supported, which takes a state ID as its argument and returns true if the state
machine is in that state. This predicate allows coordination among parallel regions.

Conditional expressions do not produce side effects.

Location Expressions
Location expressions are used to refer to a variable within the datamodel. Such expressions
are of the type: a[sel]/……./b[sel].c[sel] where c is an attribute of b and b is a data item under
a and [sel] is a selection condition, i.e. id=”foo”. Every occurrence of Location Expressions
with exception to the “foreach” is evaluated at post-parse time to speed up execution time; for
this reason it must evaluate to one and only one item in one of the active datamodels, starting
from the innermost one. It is error if it evaluates to 0 or > 1 elements.

In case of “foreach” the Location Expression will be evaluated at run time and can contain
any number of elements, including 0 elements.

Errors in Expressions
Syntactic errors are are captured at compile time and flagged; such errors stop the further
execution of the state machine.

In case a run time error arises the result is the empty string for string typed expressions and 0-
False for number type expressions.

System Variables

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 35

A protected portion of the data model is kept, to store information that can be useful to
applications. We refer to the items in this special part of the data model as 'system variables'.
Variable names beginning with '_' are reserved for system use. No ids beginning with '_' in
the <data> element are allowed. The following variables are supported in the root datamodel:

• _sessionid. This is a system-generated id for the current MIA-XML session; such a
variable is valid and constant until the session terminates.

• _name. This variable is bound at load time to the value of the 'name' attribute of the
<mia_xml> element. such a variable is valid and constant until the session terminates.

4.5 External Communication in the MIA-XML language
The External Communications capability allows an MIA-XML session to send and receive
events from external entities, and to invoke external services.

1. The <send> tag provides the capability to deliver events and data to any destination,
including other MIA-XML sessions; the 'delay' attribute allows for deferred event
delivery and can be used to implement a timer. The available transport is HTTP over
TCP/IP. Events are sent asynchronously, without the state machine wait for response;
however a confirmation is waited for by the executor, and if such a wait times out a
warinig message is generated.

2. The <invoke> tag offers a more tightly coupled form of communication, specifically the
ability to trigger an external service, pass data to it and receive data from it hrough its
child <finalize>. The semantics of the <invoke> is compatible to an HTTP request where
the invoking party waits synchronously for the reception of the result from the invoked
party. The <invoke> element is executed after the state's <onentry> element and causes
an instance of the external service to be created. The <param> and <content> elements
can be used to pass data to the service. The <finalize> code is used to normalize the form
of the returned data and to update the data model before the transitions' "event" and
"cond" clauses are evaluated. When parallel states invoke the same external service
concurrently, separate instances of the external service will be started. They can be
distinguished by ids which are associated with them. Similarly, the ids contained in the
events returned from the external services can be used to determine which events are
responses to which invocation.

<send>
<send> is used to send events and data to external systems, including external MIA-XML
executors, or to raise events in the current MIA-XML session.

The target of the <send> operation specifies the destination of the event. The target is defined
by either the 'target' or the 'targetexpr' attribute.

The type of the <send> operation specifies the method that the MIA-XML executor uses to
deliver the message to its target. Either the 'type' or the 'typeexpr' attribute to define the type
(not both at the same time). At the moment the only supported method is HTTP-POST; the
default type/typeexpr value is “xml”; in the future “json” will also be allowed.

Message Content

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 36

The sending MIA-XML executor does not alter the content of the <send> and includes it in
the message that it sends to the destination specified in the target attribute of <send>.

In the following, an example POST payload generated and sent out of the following MIA-
XML fragment:

<send id=" recogniseRequest" target="http://receive r.newamuser.it:8082/asr"
 type="xml" event=" recogniseRequest">
 <param name="grammar" expr="'grammar_complete.xml' " type="string"/>
 <param name="grammar" expr="'grammar_cancel.xml'" type="string"/>
</send>

POST payload Received at receiver.newamuser.it site on port 8082:

<event name="stopRecognition" sendId="stopRecogniti on">
 <payload>
 <parameter name="grammar" expr="'grammar_comple te.xml'" type="string"/>
 <parameter name="grammar" expr="'grammar_cancel. xml'" type="string"/>
 </payload>
</event>

In the following, a possible response issued by the receiving site (positive answer, in case it
was awaiting such a message) (200 OK header):

<eventSendAcknowledge

version="1.0" eventName="recognisedkey"
stateName="RecKeyword_CompleteCommand"
stateMachineFile="./SM/dialogue_main_7_EN"/>

Note that the absence of any error events does not mean that the event was successfully
delivered to its target, but only that the executor was able to dispatch it.

<invoke>

The <invoke element is used to create and refer to an instance of an external service.

The <invoke> tag is used to execute a child process on the same processing node where the
MIA-XML executor runs; option can be passed to the child process via the <param> tag; the
same <param> tag can take returned values back into the State Machine (see below the
<finalize> tag).

If the 'name' of a <param> element in the <invoke> matches the 'id' of a <data> element in a
<datamodel>, the value of the <param> element will be set to the value of the data element
when passed to the invoked service. If there is no data in datamodels matching the param
name that <param> element will not be passed to the service.

If the invoking state machine exits the state containing the invocation before the invoked
service terminates, it cancels the invoked session aborting the invoked service.

<finalize>
The <finalize> element enables an invoking session to update its data model with data when
it terminates its execution. <finalize> contains executable content that is executed whenever

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 37

the external service terminates its execution. This content is applied before the system looks
for transitions that match the event. In the case of parallel states, only the finalize code in the
original invoking state is executed.

4.6 Release 1.0 of the MIA-XML executor
A first version of the MIA-XML executor has been implemented and tested; this will be
referred to as release 1.0; the whole MIA-XML language is only partially supported; however
its actual coverage is large enough to run the first DIRHA prototype; Appendix 1 contains the
reference manual for the complete designed language; tags identified as “not yet
implemented” will be added in the coming months so that all the tags reported in Appendix 1
will be implemented by the end of the project. Release 1.0 already implements parallelism.

Implementation details
The MIA-XML executor has been implemented as a C++ program for maximal execution
efficiency, minimal memory footprint and maximal portability to different environments,
including mobile and embedded systems and uninterrupted operability.

A specialized regression test-suite has been developed; the following pictures report the most
common state machine structures, captured into specific test cases, starting from the simple
ones (pure sequential ones) to more complex ones, with parallelism (with reference to the
following picture, the objects with yellow background contain parallel threads).

The current Release 1.0 of the MIA-XML executor is able to handle fairly large State
Machines (up to 65k tags per state machine); some initial evaluations have been carried out in
order to assess its efficiency in terms of two orthogonal performance figures of evaluation
speed and communication speed, measured on a single CPU computer running the MS-
Windows XP operating system; there are no known benchmarks for this kind of software;
however such performances exceed any reasonable set of requirements for human to
machine interfaces.

Example Evaluation speed (states/S) Communication Speed (events/S)

Sequential16 7100 n.a. (there is no ext. communication)

Parallel3 8300 n.a. (there is no ext. communication)

Circular n.a. (there is only communication) 530

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 38

Figure 4-1 – examples of Sequential Test cases

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 39

Figure 4-2: examples of Parallel Test cases

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 40

5. House+User Profile and House+User State

Defining and keeping up-to-date House Profile and House State, as well as User Profile
allows implementing more effective dialogues, as they represent knowledge that can be used
a-priori to direct dialogues, instead of asking the user or deriving from the context; within the
DIRHA project such information will be exploited as much as possible; keeping advantage of
the concurrent nature of the dialog State Machines the House State within the Dialog
Manager is always kept in-sync with the real house, through the House Automation system.

The House Profile is a data structure abstracting and encapsulating all the unique items
contained into the specific house managed by one Dialogue instance; encapsulating such
information into a single place will be of great help in adapting the dialogue to a variety of
different Houses where the DIRHA system would be installed.

The User Profile is a data structure with the same objectives of the House Profile, but
regarding each and every user of a given house; it is fairly smaller than the House Profile; for
this reason it has been associated with the House Profile; from this point on the term House
Profile (and hence House State) will be used to refer to both House and User Profiles (and
States).

The House State is an augmentation to the House Profile holding the specific state variable(s)
for each and every object in the House Profile whose state is known, at least partially.

In order to make the dialogue independent enough from the specific house (and also the
grammars, understanding and prompts), a House Profile is being defined (according to XML
syntax).

5.1 The House+User Profile
In the following, an example of House Profile data structure is reported; a formal definition
of the data structure is reported later in this section.

<house name=“ITEA flat” address=”192.168.1.2”>
 <room name=“kitchen” id=”R1” synonyms=“food; cook ing;”>
 <window name=“small” id=”W1” synonyms=“north” c onfirm=”Y” default=”Y”/>
 <window name=“big” id=”W2” synonyms=“garden” co nfirm=”Y”/>
 <blinds name=“shutter” id=”S1” synonyms=“garden ”/>
 <door name=“entrance” id=”D1” synonyms=”hallway ” confirm=”Y”/>
 <light name=“chandelier”, id=”L1” synonyms=“mai n” default=”Y”/>
 <light name=“neon” id=”L2” synonyms=“little”/>
 <temperature name=” heater” id=”H1” synonyms=“t hermostat”/>
 <appliance name=”owen” type=“owen” id=”A1” syno nyms=“”/>
 <media name=”TV” id=”TV1” synonyms=“”/>
 <telephone name=”phone” id=”T1” synonyms=“” mod e=”handsfree”/>
 </room>
 <room name=“bathroom” id=”R2” synonyms=“washroom; restroom; …”>
 <window name=“garden”, id=”W3” synonyms=”” conf irm=”Y”/>
 <door name=“ entrance”, id=”D2” synonyms=“hallw ay” confirm=”Y”/>
 <light name=“hanging”, id=”L3” synonyms=“main” default=”Y”/>
 <light name=“mirror”, id=”L4” synonyms=“little” />
 <temperature name=” heater” id=”H2” synonyms=“t hermostat”/>
 </room>
 <room name=“bedroom” id=”R3” synonyms=“bed; sleep ; …”>
 <window name=“south”, id=”W4” synonyms=“”/>
 <blinds name=“shutter” id=”S2” synonyms=“”/>

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 41

 <door name=“entrance”, id=”D3” synonyms=“hallwa y”/>
 <light name=“chandelier”, id=”L5” synonyms=“mai n” default=”Y”/>
 <light name=“abat-jour”, id=”L6” synonyms=“litt le”/>
 <temperature name=” heater” id=”H3” synonyms=“t hermostat”/>
 <media=“TV”, id=”TV2” synonyms=“”/>
 <telephone name=”phone” id=”T2” synonyms=“” mod e=”handsfree”/>
 </room>
 <room name=“entrance” id=”R4” synonyms=“hallway”>
 <door name=“front”, id=”D4” synonyms=“front doo r” confirm=”Y”
 default=”Y”/>
 <door name=“kitchen”, id=”D1” synonyms=”” confi rm=”Y”/>
 <door name=“bathroom”, id=”D2” synonyms=“” conf irm=”Y”/>
 <door name=“bedroom”, id=”D3” synonyms=“” confi rm=”Y”/>
 <light name=“chandelier”, id=”L7” synonyms=“mai n”/>
 <temperature name=” heater” id=”H4” synonyms=“t hermostat”/>
 </room>
 <user name=“John” id=”U1” synonyms=“Johnny”>
 <preference room=“R1”>
 <set item=”S1” to=”s:100”/>
 <set item=”T1” to=”mode:headset”/>
 </preference>
 <preference room=“R3”>
 <set item=”L6” to=”s:100”/>
 </preference>
 </user>
 <user name=“Mary” id=”U2” synonyms=“”>
 <preference room=“R1”>
 <set item=”S1” to=”s:0”/>
 </preference>
 <preference room=“R3”>
 <set item=”TV2” to=”vol:50”/>
 </preference>
 </user>
</house>

The following remarks can be done with respect to the above example:

1. Some items have the attribute “confirm”: for the cases where it is defined and its
value is “Y” the dialogue requests specific confirmation to execute the command (i.e.
“do you really want to open the front door?”).

2. In case where more than one item of the same class lays within the same room, at
most one of them can have the attribute “default” set to “Y”; in this case, when a user
utterance is received for that type and that room the default item is picked without
asking more questions.

3. Items have a mandatory “id” attribute: this is the key known by the House
Automation system.

Some grammars could be built dynamically out of the House+User Profile to help the
recognition and understanding phases through a more specific data set; this information,
extracted from the House State could be part of an extended context passed to the ASR.

5.2 The House+User State
The House Profile is the ideal place to host the dialog abstraction of the state of the various
resources in the house and its inhabitants (i.e. the users).

The “House State” is an augmented version of the “House profile”, holding the current state
of each and every resource whose state is known.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 42

The House profile is constantly updated in an event-driven way as soon a change of state is
communicated by either the House Automation system of by the other parallel thread in the
Dialog State Machine. In the following, the previous example of House State is reported (in
bold face) with added the state information.

<house name=“ITEA flat” address=”192.168.1.2”
 state=”users:1; temp:20;” >
 <room name=“kitchen” id=”R1” synonyms=“food; cook ing;”>
 <window name=“small” id=”W1” synonyms=“north” c onfirm=”Y” default=”Y”
 state=”s:50;” />
 <window name=“big” id=”W2” synonyms=“garden” co nfirm=”Y”
 state=”s:100;” />
 <blinds name=“shutter” id=”S1” synonyms=“garden ” state=”s:100;” />
 <door name=“entrance” id=”D1” synonyms=”hallway ” confirm=”Y” state=”s:0;” />
 <light name=“chandelier”, id=”L1” synonyms=“mai n” default=”Y”
 state=”s:100;” />
 <light name=“neon” id=”L2” synonyms=“little” state=”s:0;” />
 <temperature name=” heater” id=”H1” synonyms=“t hermostat” state=”s:21;” />
 <appliance name=”owen” type=“owen” id=”A1” syno nyms=“” state=”s:100;temp:180;
 togo:1800;” />
 <media name=”TV” id=”TV1” synonyms=“” state=”s:100; prog:3; vol:40;” />
 <telephone name=”phone” id=”T1” synonyms=“” mod e=”handsfree” state=”Off;” />
 </room>
 <room name=“bathroom” id=”R2” synonyms=“washroom; restroom; …”>
 <window name=“garden”, id=”W3” synonyms=”” conf irm=”Y” state=”s:10;” />
 <door name=“ entrance”, id=”D2” synonyms=“hallw ay” confirm=”Y” state=”s:0;” />
 <light name=“hanging”, id=”L3” synonyms=“main” default=”Y” state=”s:0;” />
 <light name=“mirror”, id=”L4” synonyms=“little” state=”s:0;” />
 <temperature name=” heater” id=”H2” synonyms=“t hermostat” state=”s:22;” />
 </room>
 <room name=“bedroom” id=”R3” synonyms=“bed; sleep ;”>
 <window name=“south”, id=”W4” synonyms=“” state=”s:0;” />
 <blinds name=“shutter” id=”S2” synonyms=“” state=”s:0;” />
 <door name=“entrance”, id=”D3” synonyms=“hallwa y” state=”s:0;” />
 <light name=“chandelier”, id=”L5” synonyms=“mai n” default=”Y” state=”s:0;” />
 <light name=“abat-jour”, id=”L6” synonyms=“litt le” state=”s:20;” />
 <temperature name=” heater” id=”H3” synonyms=“t hermostat” state=”s:18;” />
 <media=“TV”, id=”TV2” synonyms=“” state=”s:0; prog:3; vol:40;” />
 <telephone name=”phone” id=”T2” synonyms=“” mod e=”handsfree” state=”Off;” />
 </room>
 <room name=“entrance” id=”R4” synonyms=“hallway”>
 <door name=“front”, id=”D4” synonyms=“front doo r” confirm=”Y” default=”Y”
 state=”s:0;” />
 <door name=“kitchen”, id=”D1” synonyms=”” confi rm=”Y” state=”s:100;” />
 <door name=“bathroom”, id=”D2” synonyms=“” conf irm=”Y” state=”s:0;” />
 <door name=“bedroom”, id=”D3” synonyms=“” confi rm=”Y” state=”s:0;” />
 <light name=“chandelier”, id=”L7” synonyms=“mai n” state=”s:0;” />
 <temperature name=” heater” id=”H4” synonyms=“t hermostat” state=”s:20;” />
 </room>
 <user name=“John” id=”U1” synonyms=“Johnny” state=”room:R1;RmConf:50” >
 <preference room=“R1”>
 <set item=”S1” to=”s:100;”/>
 <set item=”T1” to=”mode:headset”/>
 </preference>
 <preference room=“R3”>
 <set item=”L6” to=”s:100;”/>
 </preference>
 </user>
 <user name=“Mary” id=”U2” synonyms=“” state=”room:--;RmConf:100” >
 <preference room=“R1”>
 <set item=”S1” to=”s:0;”/>
 </preference>

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 43

 <preference room=“R3”>
 <set item=”TV2” to=”vol:50;”/>
 </preference>
 </user>
</house>

In the following a formal definition of the House+User Profile and State is reported, as DTD.

<?xml version="1.0" encoding="utf-8"?>
<!ELEMENT House (room | user)+>
<!ATTLIST House
 name CDATA #REQUIRED
 address CDATA #REQUIRED
 state CDATA #REQUIRED >
<!ELEMENT room (door | window | blinds | light | t emperature | appliance | media |
telephone)*>
<!ATTLIST room
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 synonims CDATA #IMPLIED >
<!ELEMENT door >
<!ATTLIST door
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 synonims CDATA #IMPLIED
 confirm (yes|no) "no"
 default (yes|no) "no"
 state CDATA #IMPLIED >
<!ELEMENT window >
<!ATTLIST window <!-- same as door --> >
<!ELEMENT blinds >
<!ATTLIST blinds <!-- same as door --> >
<!ELEMENT light >
<!ATTLIST light <!-- same as door --> >
<!ELEMENT temperature >
<!ATTLIST temperature <!-- same as door --> >
<!ELEMENT appliance >
<!ATTLIST appliance <!-- same as door --> >
<!ELEMENT media >
<!ATTLIST media <!-- same as door --> >
<!ELEMENT telephone>
<!ATTLIST telephone
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 synonims CDATA #IMPLIED
 mode CDATA #IMPLIED
 confirm (yes|no) "no"
 default (yes|no) "no"
 state CDATA #IMPLIED >
<!ELEMENT user (preference)*>
<!ATTLIST user
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 state CDATA #IMPLIED >
<!ELEMENT preferences >
<!ATTLIST preferences
 room CDATA #REQUIRED >
<!ELEMENT set >
<!ATTLIST set
 item CDATA #REQUIRED
 to CDATA #REQUIRED >

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 44

5.3 Synchronization among physical resources and House State
The real house resources (i.e. lights, …) will be under control of the Home Automation
system, whose purpose is to control and observe their state; the wall switches, as well as other
interaction devices (e.g. centralized console, where a graphic interface on a touch screen
allows the visualization and change of the state of the resources, or remote control) send their
commands to the House Automation system which, in turn controls the house resource.

The House Automation system will be interfaced to the Dialog Manager in a bidirectional
way:

1. from House Automation system to Dialog Manager, to let the DM update its House
State; such events will be sent as soon as the state of a house resource changes; in a
starting phase the House Automation system shall send a stream of events to let the
DM change the state of all the resources from the initial (i.e. off) position.

2. from Dialog Manager to House Automation system, to execute a spoken command
provided to the DIRHA system.

Within the Dialog Manager the House+User State will be updated according to the following
events:

1. actions over house resources done through the House Automation system (i.e. user
turned on a light using the wall switch, or the console)

2. actions over house resources done through the Dialogue Manager: this is the case of
spoken commands; in such a case the Dialog Manager will issue a command event to
the House Automation system, to request for the needed action. From the House
Management system point of view such kind of commands are logically identical to
the ones coming from the wall switches and the other control devices.

3. change in the state of Users (e.g. movement from one room to another one) notified
to the Dialog Manager by other subsystems; for example the position of one user
could be updated after each utterance provided that the system is able to recognize
the user from his/her voice and its position. In such a case one or more some
command events could be issued to the House Automation system to request actions
specified in the user preferences (i.e. change of blind position when a specific user is
into the room).

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 45

6. Integration of the CDM within the DIRHA environment

After the detailed discussion of the MIA-XML language and House state and Profiling, some
more insight can be added to what introduced in §2.2 (Design choices in the DIRHA Dialog
Management), concerning the integration of the Concurrent Dialog Manager within the
specific ecosystem of the DIRHA project.

Figure 6-1 the target Dialog Manager ecosystem for the DIRHA project

�
�
�
�

�

Figure 6-2 typical message exchange among modules

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 46

Figure �6-1 reports the CDM and its ecosystem as designed for the final prototype in DIRHA
(the oval hides all the signal processing algorithms to be developed and integrated within the
project).

Figure 6-2 shows another view of the same modules, in relation with a typical to the message
exchange sequence; notice the thick black bar, which represents the group of several
concurrent dialogs managed simultaneously; events exchanged with ASR and Prompt
Generator carry the room tag along with the other attached data.

Roles of the various modules in the interaction

The event nature of the exchange of messages among the MIA-XML executor and the other
elements in its ecosystem does not pre-configure which role (e.g. master or slave) will be
played by each element; this is decided according to each specific case. In the following, the
role attribution for the main modules is reported for each interaction.

1. Dialog Manager vs. ASR encapsulating most of the rest of the DIRHA system, such as
the Speech Understanding, Source Localization, Speaker Recognition, ….): for this
interaction the Dialog Manager is master and the ASR is slave: first the DM activates the
ASR recognition, against a specific recognition context and then the ASR returns a
recognition frame, with its fields filled with and understanding of the recognized
utterance; then the ASR is stopped.
This assumption is fairly straightforward, as the actual context to be passed to the ASR is
dependent upon the state of the dialogue and this knowledge is kept by the Dialog
Manager; in case multiple utterances are expected in different rooms, the ASR will
receive multiple activations with different room designators.
The above statement does not imply that the Dialog State Machine will be the sole place
where information about the state of the system is stored: while this is the most natural
room for storing the state of the dialogue, and easy to implement also for other kinds of
data, information about details of the acoustic scene, or other, could be stored into other
modules of the system if this is more efficient or effective.
For the above reason the context information kept by the Dialog State Machines and
passed to the ASR (and the other modules it encapsulates) has not been completely
identified; a complete list will be produced in the coming phases of the project, when the
capabilities and needs of all the encapsulated modules will be clearer.

2. Prompt Generator: for this interaction the Dialog Manager is master and the Prompt
Generator is slave; the DM activates the Prompt Generator with a file name containing
the recorded message (or the text of the string to synthesize) if needed the Prompt
Generator could be stopped in the middle of the playback of a previous message.
Prompts could be of three different kinds: (i) dynamically generated via TTS, out of the
text phrase; (ii) spoken by a professional speaker and recorded into a file; (iii) jingles,
stored into a file. While the choice of the kind of prompt is transparent to the Dialog
Manager, it is good practice for the Dialog State Machine to send along with the event

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 47

both the textual message to be synthesized in case of TTS and the file name in case a pre-
recorded message or jingle is chosen.
The choice of the prompt phrases is crucial to lead the user to give his/her answer in the
expected way (i.e. aka “linguistic inductors”), hence to improve the overall accuracy of
the system.

3. Home Automation system: for this interaction they are Peer-to-Peer (i.e. they can both
send commands to each other): the DM will send commands to the Home Automation
system as soon a command has been received (and confirmed if requested to); on the
other hand, the Home Automation system will send a change of State of (some device in)
the House as soon as entities outside DIRHA produce a state change; the House State
maintained by the Dialog State Machine will be updated accordingly to help
understanding future user commands.

Initial Development Ecosystem

While awaiting for the whole system to be complete, with the to-be ASR + Speech
Understanding + Source Localization + Speaker Recognition, a temporary development
ecosystem has been put in place; this will help to:

1. optimize and tune the Concurrent Dialog Manager, challenging it with long iterative
stimuli with test State Machines

2. develop and optimize the Dialogue State Machines

3. develop and optimize the handcrafted Grammars

4. develop end optimize the Prompts

Figure 6-3 reports this development environment.

Figure 6-3 Initial Development Ecosystem

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 48

Figure 6-4 reports the ASR Emulator page, developed in javascript/jquery; it is able to send
the ASR events as xml fragments sent in the payload of POST invocations to the CDM; the
same page, on the left hand side reports the events sent from the CDM to start the recognition
according to the requested context.

Finally, Figure 6-5 reports the simulator of the House Automation system, and is able to
show the current state of the house as set up by the dialogue. (only doors, windows and light
are shown, at the moment).

Figure 6-4 ASR Emulator

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 49

Figure 6-5 House State Display

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 50

7. Design of the User Interface Dialogue Flow

This section discusses a dialog flow able to handle a subset of the house resources that will be
dealt with by the real DIRHA prototypes; its functionalities are also limited. It has been
reported here to show through a concrete example how the various modules interact with
each other to implement the desired behaviour.

However the User interface of the DIRHA prototype #1 is being developed evolving the
reported design; since the prototype is due by M18, the design will be improved and
completed in the next few months. A specific deliverable (D1.3) is planned to document it.

General guidelines in the design of the dialogue

The DIRHA system will have an “always listening” ASR; however, in order to avoid false
starts upon utterances not directed to it or coming from TV or other sources, the ASR will be
directed to recognize against to a very specific grammar or Language model, i.e. one
containing only a very specific “keyword”, not easy to be misrecognized; after this initial turn
of dialog has passed, the real grammars or language models are activated; at the end of the
iteration the ASR will be reverted to recognize only the “keyword”. In the initial turn of
dialog the identification of the speaker could take place (when available), so that the system
could answer “Tell me <username>”. Should the identification be unavailable, or if the user
was not identified, a simple “welcome jingle” or prompt (like “Here I am”) will be played
instead.

An alternative implementation could be to join the two phases (i.e. activation and usage) into
a single phrase; in this case the “keyword” will be the first word to be spoken in the phrase;
such an approach is also considered in the user interface shown below; of course the speaker
identification will take place during the recognition of the composite phrase.

The DIRHA system will always wait for user requests, the only case in which the system will
spontaneously start a dialogue (hence skipping the initial “keyword” check) is when the
intercom or telephone is ringing. However such a case is not dealt with in the User Interface
shown below.

The User Interface is aware of each and every physical resource of the house (i.e. which
rooms, doors, lights, … lay in every room) and of the state of each one of them, through the
House+User Profile and House+User State, according to what discussed in Section 6;
however, for sake of simplicity, in the User Interface presented here, only the command flow
from the Dialog Manager to the House Automation system is designed.
Names (and synonyms) for all the resources of the house are taken from the House Profile,
that would be different for each users’ home; on the other hand the dialogue flow defines
other voice commands independent on the house profile: these are some “general
commands”, as Cancel, Exit or Stop, to end the interaction on the voice interface, and verbs
related to the actions allowed to operate upon each item.
The actions allowed for each device could be not only verbs representing binary action modes
(e.g. open/close, switch on/off, etc...), but also “gradual” ones, to specify the desired position.
The dialogue flow will allow not only to change the state of one item but also to obtain
information about its state.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 51

However, in the general case, it is preferable that the understanding data/knowledge base was
based on the specific House profile, in order to avoid recognizing some classes or objects
which are not available in that house.
The localization of the speaker is crucial to know which item he/she is talking about but also
to determine which loudspeakers shall be used when playing back the responses.
The dialogue assumes that the position of the speaker is provided with the granularity of the
“room” (i.e. no finer grain localization is assumed).
The DIRHA system will be used continuously on a daily basis; this must be taken into
account also when designing prompts: while they should be informative enough in the first
period of use they could soon be perceived as redundant (some form of parameterization
could also be adopted).

7.1 Introduction to the Dialog Flow
The dialog must figure out the following parameters:

1. class - the class of object that the user is talking about (i.e. door, light, …);
2. action - the action that the user wants to apply on the object (including no action,

meaning to know its actual state)
3. attribute – any qualifier that uniquely identifies an object within its class (i.e. its

name); the identification of one object could be determined by the system in different
ways:

a. the attribute is provided explicitly
b. the room name is provided explicitly and it has one object only of that class
c. the room name is provided explicitly, it has many objects of that class but one

is marked as the default one
d. nothing is provided but the user localization has detected with enough

confidence the position of the speaker: in this case the dialog assumes that the
room of the item is the one which he/she is in and b or c hold;

With respect of the triple {class, action, attribute}, the first element is the most important
one: if the recognized utterance contains only this one the dialogue enters a “refinement”
procedure requesting the other ones in further turns of dialogue; in case this one is missing
the dialogue enters a “recovery” procedure which asks it again.
The following list reports the utterances that will generate a reaction of the system:

• recognition of object class + attribute (in one of the 4 forms above listed): the
refinement procedure is invoked, saying the status of the item and asking if change in
state is wanted (i.e. “the kitchen light is off; do you want to turn it on?);

• recognition of object class + action + attribute (in one of the 4 forms above listed):
the system executes the desired action on the requested object; in case explicit
confirmation is desired for that object, the “confirmation” procedure is will ask a
confirmation before executing the action; if the action required would place the object
in the same state it is already, (e.g. the user asks to open a window already open), the
system would ask if he/she wants to change it to the opposite state.

Interaction with the ASR+Speech Understanding
All the interactions between the Dialog Manager and the ASR+ Speech understanding occur
exchanging of “events”, each of one carrying some attached data: the attached data sent from
DM to ASR+SU are the type of recognition (i.e. the activation key or a complete utterance)

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 52

and the recognition context: for Grammar based Understanding such context is represented
by the set of grammars relevant for that turn of dialog while, for Language Model based
Understanding such context is represented by the goal to be pursued

Table 7.1 shows the data attached to events that sent by the DM to the ASR + SU.

Event Description

recognisedkey Only the activation keyword recognized

recognisedanswer Recognized utterance containing at least one of the semantic elements listed in
the table below.

Table 7.1

Table 7.2 describes the variables (called Semantics_Slot) expected by the DM as attached to
recognition events, used to manage the dialog; the table contains a brief description of the
content of each slot, the values the DM expects for the showcase and some examples of
words that produce these values if contained in the user utterance.

Semantic Slot Description Expected values Examples of synonms

Semantics_object House device door / light / window door, light, window,
chandelier

Semantics_obj_attr Attribute of the device small / large small, little, large, great,
round, square, front

Semantics_action Action to be done on the
device

open / close / state /
turnOn / turnOff /

open, close, turn on, turn
off, how is,

Semantics_location

Location of the device (room
where the device is)

kitchen / bathroom /
livingRoom / entrance /
closet / bedroom /
littleBedroom / hallway

kitchen, kitchenette,
bathroom, toilet, living
room sitting room,
closet, broom closet,
utility room, entrance,
bedroom, large bedroom,
little bedroom

Semantics_position user position in the house
detected by the system

kitchen / bathroom /
livingRoom / entrance /
closet / bedroom /
littleBedroom / hallway

Semantics_confirm confirm/negation of the DM
ask for confirmation or user
stop to the dialog

yes/no/cancel yes, ok, certain, right,
that’s right, no, that’t
wrong, not at all, cancel

ASR_confidence ASR confidence of the
recognized sentence

%, from 0 to 100

SP_confidence User Position confidence %, from 0 to 100

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 53

Speaker speaker name when detected

Utterance ASR recognized sentence

Table 7.2

The two slots Semantics_location and Semantics_position share the same domain; in the
same turn of dialog the two variables can assume different values; for example if the user is
in the kitchen and says: “open the bathroom door” the value of the variable
Semantic_location is “bathroom” while the value of the variable Semantic_postion is
“kitchen”.

Tebel 7.3 shows the names of the grammars that will be used by the ASR in the reported
dialog flow; for each grammar the table points out the events and variables (see tables 7.1,
7.2) that are filled and shows some sentence examples.

Grammar file names Returned Event and variables Utterance examples

grammarkey.xml event: recognisedkey

grammar_complete.xml event: recognisedanswer

variables:
Semantics_object
Semantics_obj_attr
Semantics_action
Semantics_location

open the door;
close the kitchen window;
turn on the closet light;
close the living room little window;
how is the front door?

grammar_cancel.xml event: recognisedanswer
variable: Semantics_confirm

Cancel, stop, annul

 event: recognisedanswer
variable: Semantics_location

the bedroom door

the bathroom one

grammar_yesno.xml event: recognisedanswer
variable: Semantics_confirm

Yes, no, ok, not at all

grammar_attribute.xml event: recognisedanswer
variable: Semantics_obj_attr

the round window

the large one

Table 7.3

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 54

7.2 Discussion of the dialogue flow
In the following a possible dialogue for the DIRHA scenario is discussed; it can be seen as a
starting point of the user interface that will be implemented for prototype 1.
While the dialogue is represented as the single user interface taking control of the House
Automation system, thanks to the Concurrent Dialogue Manager, it can be instantiated
several times, i.e. one per room; however, the strategy to handle concurrency will be
addressed in the coming months, to be delivered in the final prototype.
Regarding the addressed services, only those facilities whose dialogue flow really differs
from each other, are reported, like the voice interaction to manage the doors and the lights (a
description of all the services that will be implemented for the first prototype will be provided
in D1.3). The sub-flow dealing with the windows (i.e. “windows management”) is not
detailed in the following, as it is very similar to the “Doors management” one (i.e. only the
prompts change).

N symbol explanation N symbol explanation

1

Start of flow/procedure 5

Decision among alternatives

contained in the user response

2

Logical Decision 6

Invoke sub-flow

3

Prompt issued to the user 7

Return from sub-flow

4

Wait for user response

(context reported in the box)
8

Invoke external procedure

Figure 7.1: Legend

Figure 7-2 shows the top level flow of dialogue: the system, always listening, has to be
“activated” saying the activation keyword; after the activation keyword the real first turn of
dialogue can occur: the user can say any command related to the facilities automatized in
his/her home; however, in the reported example only doors, windows and light management
are dealt with.
Notice the use of blocks of type 4 (Wait for user response); this blocks activates the ASR+SU
with the specified context (i.e. the recognition goal or grammar names written inside the
block); the flow is blocked until the ASR+SU returns a result (including TimeOut or No
Match if it is needed to).
The check at the beginning of the dialogue flow shows the availability of a feature that allows
the user also to say the activation keyword immediately followed by a command to operate
on one item.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 55

Of course there is always an escape command available (e.g. Cancel or Exit), as well there is
always an Error recovery procedure to manage possible recognizer’s errors.
After one user request has been recognized and processed the system remains “active” for a
few seconds to let users say another request; after this the system returns to wait for the
activation keyword.

������
��	
�
�
��

grammar_complete +

grammar_cancel �
������
	����
�
��

������
����	
�
��

�������
����	
�
��

�	����
����	
�
��

���������	�
����
���	��
���

��
��������	�
���
���	��
���

��
���������	�
���
���	��
���

�
�
����������
�
���
��

��
�������
�����	�

grammarkey �

grammar_complete

�
�
����� ��	�
���
���
��������

���������

��!
�������

"#$%&'

#(#�'
'�)#*%'

+	�
���
���
,�-��������-

.#$

�*

�
���
����
��
'�������������

�����

$���/���
����0�
+��
�����1

-�� ��

�����������

2+&$# '"%#

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 56

Figure 7-2: House facilities procedure

According requirements expressed by interviewed users (see Deliverable D1.1), the Error
recovery procedure (that manages both misunderstanding problems and missed commands)
tries for two times to recover the “error”, then suggest to use the haptic interface.

��������

$#3*�4

���������� �!���
5�������������������

���-�����������
�������6������-�

3��	������	��	���
��
��	������0

'��"4

���������� �"�
�� $���-6�����
���

�
��7�������-��0�
5��������������
�������	������0

���������� �#���
$���-6����
��7�������
-��0�5��������������
��������
��	���������

����������6������-�
3��	������	��	�����
��

	������0

2�"$'

"#$%&'�8�2+&$#

"#$%&'�8�'"%#

#�'".�
�%)9#"

���)��	�

$#3*�4

������������!�
�� 5��������������
�!�	��-���������

-�����������
�������6������-�

3��	������	��	���
��
��	������0

'��"4

������������"���
$���-6�����
����
��7��

����������0�
5��������������
�������	������0

������������#���
$���-6����
��7��

����������0�5�����������
�����������
��	����

���������������6������-�
3��	������	��	�����
��

	������0

2�"$'

"#$%&'�8�'"%#

#�'".�
�%)9#"

:�������#�����
��	����-

#����1

"#$%&'�8�2+&$#

Figure 7-3: General Error recovery

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 57

Each procedure listed in the “House facilities” flow is related to a class of objects (i.e. doors,
…). Handling of some of them have a similar dialogue structure which can vary depending
by the fact that a confirmation request is needed or not before to operate the item. As can be
seen in the following dialogue flow, in the “Doors management” procedure is foreseen a
confirmation because door movements can be “dangerous” for an impaired person.

������
����	
�
���

'"%#

'"%#

$����8�	�
���
��;�
���1

�*
.#$

��������	�
��

3���
���
��;������1�

$�������%�������
�&
����
�� '������	��
����
����<�=�
�<���=��������

.#$

3*�2�")�
4**"$

�*

�������

.#$2+&$#

&�	��
�����������
���
�����1�

.#$

4**"$�
"#>%#$'
&*3+'�*�

�*

4�����#�����
��	����-

"#$%&'2+&$#

�����
��+	�
��12+&$#

&�	��
��12+&$#

+	�
��12+&$#�$'+'# '"%#

"#$%&'

'"%#

2+&$#

$�������%��������
���
'�
�&���
���(���
�� '���
���	��
��������<�=�
�<���=

������-��������

'"%#

"#$%&'�8�'"%#

�*

"#$%&'

"#$%&'�8�'"%#

Figure 7-4: Doors management

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 58

A precise identification of the object that the user wants to operate is needed each time that it
is not possible to use a “default”. For this reason, the system propose this “Request location”
procedure if the users does not specify the location of the object and/or the recognizer does
not get its location. Before to try to localize the item that the user wanted to operate, the
system should check if the action required by the user is coherent with the object got by the
recognizer (e.g. it is possible to combine the action “to open" with the object "door”, while
should not be allowed to combine the verb “to open" with the item "light”). If there is no
coherence, the dialogue proposes some error recovery prompts (see the right-hand prompt
following the “false” branch).

Figure 7-5: Doors request location

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 59

In the “Door management” before to activate a door, the system requires a confirmation. The
first check of this dialogue procedure is related to a part of the dialogue shown on the “Door
management” procedure (see fig. 2): if the user asks to change the status of the door in a state
equal to the one in which the door already is (e.g. asking to open a door already opened), the
dialogue asks if he/she wanted to do the opposite action. At the opposite, if the required
action is coherent with the status of the item, in this procedure, the system just requires to
confirm all the collected data.

3*�2�")
4**"$

$�������%����(��)����
�
�&����
�� 4��-�����������

��	�
�����������	��
����
����<�=1

.#$

grammar_yesno ?�

grammar_cancel

������������"�
�� $���-6�����
���

�
��7��
����������0�

5��������������
�������	������0

"#$%&'�8�2+&$#

"#$%&'�8��*

�������
�	�
��1

2+&$# '"%#

(��)�����
���&
����
����� 4��-���

����������	�
����
�1

"#$%&'�8�.#$

���������� �"�
�� $���-6�����
���
�
��7������0�

5��������������
�������	������0

�*

�*)+'3��@

����� ��
����
���� $���-6���

���7��
����������0�

���*���
��+� �
�� $���-6����
��7��

�����-��0

�*)+'3��ABC �*��5%'ABC �*��5%' @

"#$%&'�8�2+&$#

3+�3#&

Figure 7-6: Confirm Door

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 60

As there is a “General error procedure” in the “House facilities” dialogue, also in the “Door
management” service there is an error recovery procedure which manages both
misunderstanding problems and missed commands.

4�����#�����
"�	����-

����	
���� 5���������������!�	��-�
�����������������6������-�3��	���

���	��	�����
��	������0

"#$%&'�8�'"%#

+3'�*�

grammar_complete �
������
	����
�
���?�
grammar_cancel

������������"�
�� $���-6�����
���

�
��7������������0�
5��������������
�������	������0

"#$%&'�8�2+&$#

"#$%&'�8�2+&$#

���������� �
"��� $���-6�����
���

�
��7������0�
5��������������
�������	������0

�*��5%'C�*)+'3��C

�*)+'3��A
�*��5%'A

3+�3#&

����� ��
�������
� $���-6������7��

����������0�

���*���
��+� �
�� $���-6����
��7��

�����-��0

Figure 7-7: Doors Error Recovery

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 61

The “Lights management” procedure is reported here because differs from the “Doors
management” procedure, since it does not require a confirmation before to operate the item
(see the right low branch at the bottom of the figure). Nevertheless, also for this service, a
confirmation procedure is still foreseen to manage the cases in which the requested light is in
a location far from the user (see the left low branch at the bottom of the figure).

Figure 7-8: Lights management

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 62

8. Conclusions

This document discussed the modules of the DIRHA project involved in the handling and
fulfilment of the user requests expressed through spoken utterances, namely the Dialog
Manager, the Speech Understanding the Prompt Producer and the house State Keeper.

Such subsystems are devoted to gathering users’ requests through an interactive process and
fulfilling them, issuing the proper commands to the House Automation system; the Dialog
Manager is the module in charge of conducting this interaction, iteratively asking the proper
question to elicit the needed information form the user in the expected form. To this end, the
choice of the prompt phrase is crucial to “linguistically induce” the user to give its answer in
the expected way, hence to improve the overall accuracy of the system.

The dialog process can take from one to several iterations, ranging from the case of the
trained user who says all the relevant information at once (and the system correctly
understands it) to several turns of dialog, where the Dialog Manager tries to complete the
needed set of information pieces asking dedicated questions – of course a well designed
dialog should set a limit in the length of the interaction and give up in case such a limit is
exceeded.

After a short survey of the approaches to dialog management the report highlighted the
approach to be followed in the DIRHA project; in order to fulfil the challenging constraint of
handling more than one session taking place in different rooms, a state based approach has
been chosen for the dialog management and, in particular the formalism proposed by D.
Harel in its State Charts methodology has been adopted: an executor of concurrent state
machines has been developed; its input formalism, MIA-XML has been defined subsetting
the SCXML language being standardized (not yet approved at the date of writing) at W3C
(see Appendix 1 for the MIA-XML reference manual). Version 1.0 of the executor has been
released and is ready to be used in the first prototype (M18 and M24); in the while an
improved version will be developed in the M12-M24 timeframe.

The developments in Speech Understanding have been discussed in Section 3; actually two
approached are being investigated, the grammar-based and the data-driven with the intention
to compare the safer but limited use of grammars with the more generalized paradigm based
on statistics. The work on the data-driven approach is considered as medium-term research
activity as it requires a preliminary implementation of some auxiliary tools: as such, the
resulting component will not be directly integrated in the intermediate prototype. Moreover,
the possible advantage of this approach will be measured not only in terms on pure
performance but also considering time and resources for the development as it is believed
that the initial major effort can be later compensated by a faster porting to new users and
settings.

The aspects of User and House Profile and State have been addressed and a data model for
their handling has been discussed.

After the discussion of each and every single component (i.e. the Dialog Manager, the Speech
Understanding, the Prompt Producer, and the House State Keeper) their mutual integration
has been discussed, in Section 6; some intermediate integrations (i.e. where not all the
components are available) have already been presented; in particular the one with an
emulated version of the ASR+SU and of the House Automation are of interest, as they allow
to start implementing advanced state machines ahead of time.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 63

This phase has actually already started: starting from the requirements gathered in WP1 (see
D1.1) an initial system has been designed to be demonstrated in the Dialog Showcase (see
D6.1) and is currently being evolved according to the results of the Wizard of Oz experiments
to become the base for the first DIRHA prototype. Such a system has taken as a case study in
Section 7 to discuss the process of implementing a system using the DM and its “ecosystem”.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 64

References

[1] J. Peckham, A new generation of spoken dialog systems: results and lessons from the
SUNDIAL project. In Proc. of the European Conference on Speech, Communication and
Technology. 33−40, 1993
 [2] L. Lamel, S. Rosset, J. Gauvain.and S. Nennacef.,.The LIMSI ARISE system for train
travel information. In Proc. of the IEEE International Conference on Acoustics, Speech and
Signal Processing. 501−504, 1999.
[3] Voice Extensible Markup Language (VoiceXML) Version 2.0. W3C Recommendation 16
March 2004
[4] M. McTear, Modelling spoken dialogues with state transition diagrams: Experience of the
CSLU toolkit. In Proc. of the International Conference on Spoken Language Processing.
1223−1226, 1998
[5] T. Paek, Reinforcement learning for spoken dialogue systems: comparing trengths and
weaknesses for practical deployment. In Proc. of Workshop on Dialogue on Dialogues,
International Conference of Spoken Language Processing, 2006
[6] O. Lemon, X. Liu, D. Shapiro and C. Tollander, Hierarchical Reinforcement Learning of
Dialogue Policies in a development environment for dialogue systems: REALLDUDE. In
Proc. of Brandial, the 10th SemDial Workshop on the Semantics and Pragmatics of Dialogue,
2006
[7] J. D. Williams, The best of both worlds: Unifying conventional dialog systems and
POMDPs. In Proc. of the International Conference on Spoken Language Processing, 2008.
[8] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet Project.
In Proceedings of the 17th international conference on Computational linguistics, pages 86–
90, 1998.
[9] Roberto Basili, Diego De Cao, Alessandro Lenci, Alessandro Moschitti, and Giulia
Venturi. EvalIta 2011: the Frame Labeling over Italian Texts Task. Springer, 2012.
[10] Roberto Basili, Diego De Cao, Danilo Croce, Bonaventura Coppola, and Alessandro
Moschitti. Cross-Language Frame Semantics Transfer in Bilingual Corpora. In
Computational Linguistics and Intelligent Text Processing, Lecture Notes in Computer
Science, chapter 27, pages 332–345. 2009.
[11] Bonaventura Coppola and Alessandro Moschitti. A General Purpose FrameNet-based
Shallow Semantic Parser. In Proceedings of the 7th Language Resources and Evaluation
Conference, pages 19–21, La Valletta, Malta, 2010.
[12] Bonaventura Coppola, Alessandro Moschitti, and Giuseppe Riccardi. Shallow semantic
parsing for spoken language understanding. In HLT-NAACL (Short Papers), pages 85–88,
2009.
[13] Dipanjas Das, Nathan Schneider, Desai Chen, and Noah A. Smith. Probabilistic Frame-
Semantic Parsing. In Proceedings of the 11th Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 948–956, Stroudsburg, PA,
USA, June 2010.
[14] Dipanjas Das, Nathan Schneider, Desai Chen, and Noah A. Smith. SEMAFOR 1.0: A
Probabilistic Frame-Semantic Parser. Technical Report CMU-LTI-10-001, Carnegie Mellon
University, 2010.
[15] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.
Generating Typed Dependency Parses from Phrase Structure Parses. In Proceedings of the

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 65

IEEE / ACL 2006 Workshop on Spoken Language Technology. The Stanford Natural
Language Processing Group, 2006.
[16] Benoit Favre, Bernd Bohnet, and Dilek Hakkani-Tur. Evaluation of semantic role
labeling and dependency parsing of automatic speech recognition output. In ICASSP, pages
5342–5345, 2010.
[17] Charles J. Fillmore. Frames and the semantics of understanding. Quaderni di Semantica,
IV(2):222–254, 1985.
[18] C.J. Fillmore, C.R. Johnson, and M. R. L. Petruck. Background to FrameNet.
International Journal of Lexicography, 16:235–250, September 2003.
[19] Richard Johansson and Pierre Nugues. Lth: semantic structure extraction using
nonprojective dependency trees. In Proceedings of the 4th International Workshop on
Semantic Evaluations, SemEval ’07, pages 227–230, Stroudsburg, PA, USA, 2007.
Association for Computational Linguistics.
[20] Alberto Lavelli, Johan Hall, Jens Nilsson, and Joakim Nivre. Maltparser at the evalita
2009 dependency parsing task. In Proceedings of EVALITA 2009, 2009.
[21] Alessandro Lenci, Simonetta Montemagni, Giulia Venturi, and Maria Grazia Cutrull`a.
Enriching the isst-tanl corpus with semantic frames. In Nicoletta Calzolari (Conference
Chair), Khalid Choukri, Thierry Declerck, Mehmet U˘gur Do˘gan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International
Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may 2012.
European Language Resources Association (ELRA).
[22] Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin training of
dependency parsers. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 91–98, Ann Arbor, Michigan, June 2005.
Association for Computational Linguistics.
[23] Marco Pennacchiotti, Diego de Cao, Roberto Basili, Danilo Croce, and Michael Roth.
Automatic induction of FrameNet lexical units. In Proceedings of Empirical Methods in
Natural Language Processing, pages 457–465, 2008.
[24] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging, 1996.
[25] Marcella Testa, Andrea Bolioli, Luca Dini, and Giampaolo Mazzini. Evaluation of a
semantically oriented dependency grammar for italian at evalita 2009.
[26] Sara Tonelli and Emanuele Pianta. Frame information transfer from english to italian. In
Bente Maegaard Joseph Mariani Jan Odijk Stelios Piperidis Daniel Tapias Nicoletta Calzolari
(Conference Chair), Khalid Choukri, editor, Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco, may
2008. European Language Resources Association (ELRA).
[27] Marco Matassoni, Fabio Brugnara, Roberto Gretter, Evalita 2011: Automatic Speech
Recognition – Large Vocabulary Transcription, Springer, Evaluation of Natural Language
and Speech Tools for Italian , pages 274-285, 2013.
[27] Ronny Ronny, Aamir Shakoor, Fabio Brugnara, Roberto Gretter, The FBK ASR
System for Evalita 2011, Evaluation of Natural Language and Speech Tools for Italian,
Springer, pages 295-304, 2013.
[28] Daggett, Greg, DICIT Architecture, tools standards, Hardware and Software for the first
prototypes. DICIT Deliverable D2.1 - 2007
[29] David, Harel, Statecharts: A Visual Formalism for Complex Systems, Science of
Computer Programming. Volume 8. pp. 231 to 274 - 1987

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 66

[30] State Chart XML (SCXML): State Machine Notation for Control Abstraction, W3C
Working Draft, 6 December 2012 http://www.w3.org/TR/2012/WD-scxml-20121206/

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 67

Appendix 1. The MIA-XML Reference Manual

In the following the MIA-XML language is documented. Some tags are not yet implemented
in Release 1.0; they will be shown with shaded background; they have been reported in this
manual since they have been included in the language by design; they will be included in the
next release.

A1.1 Core Constructs of the MIA-XML language

<mia_xml>
The top-level wrapper element, which carries version information. The actual state machine
consists of its children. Note that only one of the children is active at any one time.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

initial false none IDREFS none A valid id The id of the initial state(s)

for the document. If not

specified, the default initial

state is the first child state in

document order.

name false none NMTOKEN none Any valid

NMTOKEN

The name of this state

machine. It is for purely

informational purposes.

xmlns true none URI none

version true none decimal none "1.0"

datamodel false none NMTOKEN "prop

rietar

y "

"proprietary

”

"proprietary” denotes the

one used by MIX-XML

binding false none enum "early

"

"early",

"late"

The data binding to use.

Children

Name times Description

<state> >= 0 A compound or atomic state

<parallel> >= 0 A parallel state.

<datamodel> >= 0 Defines part or all of the datamodel

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 68

<final> >= 0 A top-level final state in the state machine.

<state>
Holds the representation of a state.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

id false none ID none A valid id The identifier for this state.

initial false See note IDREFS none A legal state

specification

.

The id of the default initial

state (or states) for this state.

Note(s): Cannot be specified in conjunction with the <initial> element. Cannot occur in
atomic states.

Children

Name times Description

<onentry> >= 0 holds executable content to be run upon entering this <state>.

<onexit> >= 0 holds executable content to be run when exiting this <state>

<state> >= 0 Defines this <state> as a compound state, with its own structure. Defines a

sequential substate of this <state>

<transition> >= 0 Defines an outgoing transition from this <state>

<initial> >= 0 In states that have substates, an optional child which identifies the default initial

state. Any transition which takes the parent state as its target will result in the

state machine also taking the transition contained inside the <initial> element

<final> >= 0 Defines this as a parallel substate

<parallel> >= 0 Defines this as a parallel substate

<datamodel> 0:1 Defines the datamodel

Note(s):
1. An atomic state is one that has no <state> or <parallel> children.
2. A compound state is one that has <state> or <parallel> children (or a combination of

these).
3. either an "initial" attribute or an <initial> element can be specified, but not both. If neither

the "initial" attribute nor an <initial> element is specified, the MIA-XML executor will
use the first child state in document order as the default initial state.

<parallel>

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 69

The <parallel> element encapsulates a set of child states which are simultaneously active
when the parent element is active.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

id false none ID none A valid id The identifier for this state.

Children

Name times Description

<onentry> >= 0 holds executable content to be run upon entering this <state>.

<onexit> >= 0 holds executable content to be run when exiting this <state>

<state> >= 0 Defines this <state> as a compound state, with its own structure. Defines a

sequential substate of this <state>

<transition> >= 0 Defines an outgoing transition from this <state>

<initial> >= 0 In states that have substates, an optional child which identifies the default initial

state. Any transition which takes the parent state as its target will result in the

statemachine also taking the transition contained inside the <initial> element

<parallel> >= 0 Defines this as a parallel substate

<datamodel> 0:1 Defines the datamodel

<transition>
Transitions between states are triggered by events and conditioned by guard conditions. They
may contain executable content, which is executed when the transition is taken.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

event false none Event none A space-

separated list

of event

descriptors.

A list of designators of

events that trigger this

transition.

cond false none Boolean

expression

‘true’ Any boolean

expression.

The guard condition for this

transition..

target false IDREFS none A legal state

specification

The identifier(s) of the state

or parallel region to

transition to.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 70

type false emun "external" none "external",

“internal”

Determines whether the

source state is exited in

transitions whose target

state is a descendant of the

source state

Children

Name times Description

executable cont.

(see below)

>= 0 such executable content is run after all the <onexit> handlers and before the all

<onentry> handlers that are triggered by this transition.

Note(s): Transition a must specify at least one of 'event', 'cond' or 'target'.

<initial>
This element represents the default initial state for a complex <state> element (i.e. one one
containing child <state> or <parallel> elements.

Children

Name times Description

<transition> 0 : 1 A transition whose 'target' specifies the default initial state(s). This transition

cannot contain 'cond' or 'event' attributes, and shall specify a non-null 'target'

whose value is a valid state specification. This transition can contain executable

content.

<final>
represents a final state of an <mia_xml> or compound <state> element.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

id false none ID none A valid id The identifier for this state.

Children

Name times Description

<onentry> >= 0 holds executable content to be run upon entering this <state>.

<onexit> >= 0 holds executable content to be run when exiting this <state>

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 71

<onentry>
A wrapper element containing executable content to be executed when the state is entered.

Children

Name times Description

Executable

content

>= 0 The <onentry> handlers of a state are executed in document order when the

state is entered. In doing so, it treats each handler as a separate block of

executable content.

<onexit>
A wrapper element containing executable content to be executed when the state is exited.

Children

Name times Description

Executable

content

>= 0 The <onentry> handlers of a state are executed in document order when the

state is entered. In doing so, it treats each handler as a separate block of

executable content.

<history>
The <history> pseudo-state allows allows a state machine to remember its state configuration.
A <transition> taking the <history> state as its target will return the state machine to this
recorded configuration.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

id false ID none A valid id Identifier for this pseudo-

state

type false enum Boolean

expression

"shall

ow"

"deep",

"shallow"

Determines whether the

active atomic substate(s) of

the current state or only its

immediate active substate(s)

are recorded

Children

Name times Description

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 72

<transition> 1 A transition whose 'target' specifies the default history configuration. This

transition cannot contain 'cond' or 'event' attributes, and shall specify a non-null

'target' whose value is a valid state specification. This transition can contain

executable content. If 'type' is "shallow", then the 'target' of this <transition>

must contain only immediate children of the parent state.

Note(s): if the 'type' of a <history> element is "shallow", the MIA-XML executor records the
immediately active children of its parent before taking any transition that exits the parent. If
the 'type' of a <history> element is "deep", the executor records the active atomic descendants
of the parent before taking any transition that exits the parent. After the parent state has been
visited for the first time, for each <history> element, we define the set of states that the
processor has recorded to be the 'stored state configuration' for that history state. We also
define the states specified by the 'target' of the <history> element's <transition> child to be
the 'default stored state configuration' for that element.

If a transition is executed that takes the <history> state as its target, the behavior depends on
whether the parent state has been visited before. If it has, the MIA-XML executor behaves as
if the transition had taken the stored state configuration for that history state as its target. If it
has not, the executor behaves as if the transition had taken the default stored state
configuration for that history state as its target (Note that a single <state> or <parallel>
element can have both "deep" and "shallow" <history> children).

A1.2 Executable Content in the MIA-XML language

<log>
<log> allows an application to generate a logging or debug message on the file named
<stateMachine>.slg, where <stateMachine>.xml contains the MIA-XML of the State
Machine.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

Label false string

expression

empty

string

 A character string. It is

intended to provide meta-

data about the log string

specified by 'expr'.

Expr false Value

expression

none An expression returning the

value to be logged.

Note(s): The manner in which the message is displayed or logged is platform-dependent. The
MIA-XML executor works in a way that <log> has no side-effects on document
interpretation.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 73

<assign>
The <assign> element is used to modify the data model.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

location True path

expression

none Any valid

location

expression.

The location in the data

model into which to insert

the new value.

expr false This

attribute

must not

occur in

an

<assign>

element

that has

children.

value

expression

none Any valid

value

expression

An expression returning the

value to be assigned

Children

Name times Description

subfields >= 0 element provide an in-line specification of the legal data value to be inserted

into the datamodel at the specified location.

Note(s): assign must specify either "expr" or children of <assign>, but not both.

Assignment to a data model is done by using a location expression to denote the part of the
data model where the insertion is to be made. If the location expression does not denote a
valid location in the datamodel or if the value specified (by 'expr' or children) is not a legal
value for the location specified the assign is not performed..

<raise>
The <raise> element raises an event in the current execution session. Note that the event will
not be processed until the current block of executable content has completed and all events
that are already in the internal event queue have been processed. For example, suppose the
<raise> element occurs first in the <onentry> handler of state S followed by executable
content elements ec1 and ec2. If event e1 is already in the internal event queue when S is
entered, the event generated by <raise> will not be processed until ec1 and ec2 have finished
execution and e1 has been processed.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 74

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

event true NMTOKEN none Identifier for this pseudo-

state

type false enum Boolean

expression

"shall

ow"

"deep",

"shallow"

Specifies the name of the

event. This will be matched

against the 'event' attribute

of transitions.

Note: the event that will be placed at the back end of the session's internal event FIFO queue.

<if> <elseif> <else>
<if> is a container for conditionally executed elements.

<elseif> is an empty element that partitions the content of an <if>, and provides a condition
that determines whether the partition is executed.

<else> is an empty element that partitions the content of an <if>. It is equivalent to an
<elseif> with a "cond" that always evaluates to true.

Attribute Details of <if>

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

Cond True Conditional

expression

‘true’
A boolean expression

Children of <if>

Name times Description

<elseif> >= 0 See below

<else> >= 0 See below

Executable

content

>= 0 Note that since <if> itself is executable content, nested <if> statements are

allowed

Note(s): the behavior of <if> is defined in terms of partitions of executable content. The first
partition consists of the executable content between the <if> and the first <elseif>, <else> or
</if> tag. Each <elseif> tag defines a partition that extends from it to the next <elseif>,
<else> or </if> tag. The <else> tag defines a partition that extends from it to the closing </if>
tag. A partition may be empty. <else> must occur after all <elseif> tags.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 75

When the <if> element is executed, the executor executes the first partition in document
order that is defined by a tag whose 'cond' attribute evaluates to true, if there is one.
Otherwise, it executes the partition defined by the <else> tag, if there is one.

The following is is an example:

<if cond="cond1">
 <!-- selected when "cond1" is true -->
<elseif cond="cond2"/>
 <!-- selected when "cond1" is false and "cond2" i s true -->
<elseif cond="cond3"/>
 <!-- selected when "cond1" and "cond2" are false and "cond3" is true -->
<else/>
 <!-- selected when "cond1", "cond2", and "cond3" are false -->
</if>

<foreach>
The <foreach> element allows the executable content of a state to iterate through a collection
in the data model and to execute the actions contained within it for each item in the
collection.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

array true Value

expression

none A value

expression

that

evaluates to

an iterable

collection.

The <foreach> element will

iterate over a shallow copy

of this collection.

item true xsd:string none Any variable

name that is

valid in the

specified

data model.

A variable that stores a

different item of the

collection in each iteration

of the loop.

index false xsd:string none Any variable

name that is

valid in the

specified

data model.

A variable that stores the

current iteration index upon

each iteration of the foreach

loop.

Children

Name times Description

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 76

Executable

content

>= 0 items of executable content. (Note that they are considered to be part of the

same block of executable content as the parent <foreach> element.)

Note(s): The executor declares a new variable if the one specified by 'item' is not already
defined. If 'index' is present, the executor declares a new variable if the one specified by
'index' is not already defined. If 'array' does not evaluate to a legal iterable collection, or if
'item' does not specify a legal variable name, the executor terminates execution of the
<foreach> element and the block that contains it.

The executor acts as if it has made a shallow copy of the collection produced by the
evaluation of 'array'. Specifically, modifications to the collection during the execution of
<foreach> shall affect the iteration behavior. The executor starts with the first item in the
collection and proceed to the last item in the iteration order that is defined for the collection
(This order depends on the data model in use). For each item in turn, the processor assigns it
to the item variable. (Note that the assigned value may be null or undefined if the collection
contains a null or undefined item.) After making the assignment, the executor evaluates its
child executable content. It then proceeds to the next item in iteration order. If the evaluation
of any child element causes an error, the processor ceases execution of the <foreach> element
and the block that contains it (Note that there is no break functionality to interrupt <foreach>,
however targetless and/or eventless transitions can provide sophisticated iterative behavior
within the state machine itself).

A1.3 The Data Model in the MIA-XML language

<datamodel>
<datamodel> is a wrapper element which encapsulates any number of <data> elements, each
of which defines a single data object. Top-level <datamodel> is one occurring directly under
the <mia_xml> element.

Children

Name times Description

<data> >= 0 Each instance defines a named data element

<data>
The <data> element is used to declare and populate portions of the datamodel.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

id true ID none The name of the data item

expr false Expression none Any valid

value

Evaluates to provide the

value of the data item.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 77

expression

type enum “num

ber”

“number”,

“sting”

Provides the type of the data

item

Children

Name times Description

<data> >= 0 Nested data

Note(s):

1. If the 'expr' attribute is present, the executor evaluates the corresponding expression at the
time specified by the 'binding' attribute of <mia_xml> and assigns the resulting value as
the value of the data element. If the value specified for a <data> element is not correct,
the executor flags an error.

2. The MIA-XML executor uses any values provided by the environment at activation time
as defaults, in place of those provided in the “expr” attribute, for those elements contained
in the <data> elements of the top-level <datamodel>s.

 <content>
A container element holding data to be passed to an external service: by means of <send> or
<invoke> tags. When evaluating the <content> element, if the 'expr' value expression is
present it is evaluated first and the result is taken as the <content> element. If the evaluation
of 'expr' produces an error, the empty string is used as the value of the <content> element. If
the 'expr' attribute is not present, the children of <content> is considered (see explanation of
the children of the tag).

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

Expr false must not

occur with

child

content

Value

expression

none Any valid

value

expression

A value expression

Note(s): the 'expr' attribute and child contents are alternative.

<param>
The <param> tag provides a general way of identifying a key and a dynamically calculated
value which can be passed to an external service or included in an event.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 78

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

name true NMTOKEN none A string

literal

The name of the key

expr false May not

occur with

'location'

value

expression

none Valid value

expression

A value expression

location false May not

occur with

'expr'

Variable

name

none Valid

location

expression

The name of the key

type false Type name none number The type of the parameter

Note(s): the 'expr' and 'location' attributes are alternative. If the 'location' attribute does not
refer to a valid location in the data model, or if the evaluation of the 'expr' produces an error,
the <parameter> tag is ignored.

System Variables

• _sessionid. This is a system-generated id for the current MIA-XML session; such a
variable is valid and constant until the session terminates.

• _name. This variable is bound at load time to the value of the 'name' attribute of the
<mia_xml> element. Such a variable is valid and constant until the session terminates.

A1.4 External Communication in the MIA-XML language

<send>
<send> is used to send events and data to external systems, including other MIA-XML
executors, or to raise events in the current MIA-XML session.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

event False Must not

occur with

'eventexpr'

EventType.d

atatype

none A string

literal

A string indicating the name

of message being generated

eventexpr False Must not

occur with

'event'.

Value

expression

none Valid value

expression

A dynamic alternative to

'event'. See note 1 below

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 79

target False Must not

occur with

'targetexpr

'

URI none A valid

target URI

The unique identifier of the

message target that the

platform should send the

event to.

targetexpr False Must not

occur with

‘target’.

Value

expression

none Valid value

expression

A dynamic alternative to

‘target’. See note 1 below

type False Must not

occur with

'typeexpr'

string none “xml” The type of formatting of

the POST payload

typeexpr False Must not

occur with

type.

string

expression

none Valid value

expression

id False Must not

occur with

'eventexpr'

EventType.d

atatype

none A string

literal

A string indicating the name

of message being generated

idlocation False Must not

occur with

'event'.

Location

expression

none Any valid

location

expression

A dynamic alternative to id.

See note 1 below

delay false Must not

occur with

'delayexpr'

see note 2

Duration.dat

atype

none A time

designation

A string indicating the name

of message being generated

delayexpr False Must not

occur with

delay. See

note 2

Value

expression

none Valid value

expression

A dynamic alternative to

delay. See note 1 below

namelist False See note 3 List of

location

expressions

none List of data

model

locations

A space-separated list of

one or more data model

locations to be included as

attribute/value pairs with the

message.

Note(s):
1. If this attribute is present, its actual value will be evaluated when the parent <send>

element is evaluated and treat the result as if it had been entered as the static value.
2. Must not occur with 'delayexpr' or when the attribute 'target' has the value "_internal".
3. Must not be specified in conjunction with the <param> or <content> elements.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 80

Children

Name times Description

<param> >= 0 this element is evaluated when the parent <send> element is
evaluated: the resulting data is passed to the external service when
the message is delivered.

<content> >= 0 this element is evaluated when the parent <send> element is
evaluated: the resulting data is passed to the external service when
the message is delivered.

Note(s):

1. Only one of 'event', 'eventexpr' and <content> must be provided; "namelist" or <param>
cannot be provided along with <content>.

2. If 'idlocation' is present, an id is generated when the parent <send> element is evaluated;
such an id is stored in the provided location.

3. If a delay is specified via 'delay' or 'delayexpr', such time interval will be waited for
before sending the event: note that the evaluation of the send tag will return immediately.
However all arguments to <send> are evaluated when the <send> element is evaluated,
and not when the message is actually dispatched. If the evaluation of <send>'s arguments
produces an error, the message will be discarded before attempting to deliver it. If the
MIA-XML session terminates before the delay interval has elapsed, such message will be
discarded without attempting to deliver it.

<invoke>
The <invoke element is used to create an instance of an external service.

Attribute Details

Name Requ

ired

Attribute

Constr.ts

Type Def.lt

Value

Valid

Values

Description

type false Must not

occur with

'typeexpr'

URI none A string

literal

The URI that identifies the

transport mechanism for the

message.

typeexpr false Must not

occur with

type.

Value

expression

none Valid value

expression

A dynamic alternative to

'type'. See note 1 below

src false Must not

occur with

srcexpr

see note 2

Duration.dat

atype

none A time

designation

A string indicating the name

of message being generated

srcexpr false Must not Value none Valid value A dynamic alternative to

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 81

occur with

src. See

note 2

expression expression delay. See note 1 below

namelist false See note 3 List of

location

expressions

none List of data

model

locations

A space-separated list of

one or more data model

locations to be included as

attribute/value pairs with the

message.

Children

Name times Description

<param> >= 0 Element containing data to be passed to the invoked service

<finalize> 0,1 Element containing executable content to massage the data
returned from the invoked component.

<content> >= 0 this element is evaluated when the parent <invoke> element is
evaluated: the resulting data is passed to the invoked service.

Note: Exactly one of src, param and <content> must be provided; However <param> may
occur multiple times.

<finalize>
The <finalize> element enables an invoking session to update its data model with data
contained in events returned by the invoked session. <finalize> contains executable content
that is executed whenever the external service returns an event after the <invoke> has been
executed. This content is applied before the system looks for transitions that match the event.
In the case of parallel states, only the finalize code in the original invoking state is executed.

Children

Name times Description

Executable

content

>= 0

Note(s):

1. the executable content inside <finalize> must not raise events or invoke external actions.
In particular, the <send> and <raise> elements must not occur.

2. If one or more elements of executable content is specified, they will be executed each
time an event is received from the child process that was created by the parent <invoke>
element.

3. If no executable content is specified, the executor updates the data model each time an
event is received from the child process that was created by the parent <invoke> element.

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 82

Specifically if the parent <invoke> element contains or one or more <param> children
containing 'location' attributes, then for each such <param> element, the Processor will
update the corresponding location with any return value that has a name that matches the
'name' of the <param> element. Thus the effect of an <invoke> with an empty <finalize>
element and a <param> element with a 'location' attribute is first to send the part of the
data model specified by 'location' to the invoked component and then to update that part
of the data model with any returned values that have the same name (this implements
parameter passing by “value and return” among the state machine and the external
service). Note that the automatic update does not take place if the <finalize> element is
absent as opposed to empty.

A1.5 The DTD of the MIA-XML language as of Release1.0
In the following the DTD of the mia-xml language supported by Release 1.0 is reported.
<?xml version="1.0" encoding="utf-8"?>

<!ELEMENT mia_xml (state | parallel | final | datam odel)+>

<!ATTLIST mia_xml

 initial CDATA #IMPLIED

 name CDATA #IMPLIED

 xmlns CDATA #REQUIRED

 version “1.0”

 datamodel (proprietary) "proprietary"

 binding (early|late) "early”>

<!ELEMENT state (onentry | onexit | transition | in itial | state | parallel
| datamodel | final)*>

<!ATTLIST state id CDATA #REQUIRED

 initial CDATA #IMPLIED >

<!ELEMENT parallel (onentry | onexit | transition | state | parallel)*>

<!ATTLIST parallel id CDATA #IMPLIED >

<!ELEMENT executableContent (send | assign | log)>

<!ELEMENT transition (executableContent)*>

<!ATTLIST transition

 event CDATA #IMPLIED

 cond CDATA #IMPLIED

 target CDATA #IMPLIED

 type (external | internal) "internal" >

<!ELEMENT initial (transition)>

<!ELEMENT final (onentry, onexit)*>

<!ATTLIST final id CDATA #REQUIRED >

<!ELEMENT onentry (executableContent)*>

<!ELEMENT onexit (executableContent)*>

<!ELEMENT datamodel (data)*>

<!ATTLIST data

 id CDATA #REQUIRED

 type (integer|string) " number"

 expr CDATA #IMPLIED >

© DIRHA Consortium 2012-2014

D5.1 - Design of components for understanding,

dialogue management and feedback to the user

DIRHA_D5.1_20130220 83

<!ELEMENT send (parameter)>

<!ATTLIST send

 event CDATA #IMPLIED

 eventexpr CDATA #IMPLIED

 target CDATA #IMPLIED

 targetexpr CDATA #IMPLIED

 type (xml | basichttp) "xml"

 typeexpr CDATA #IMPLIED

 id CDATA #IMPLIED

 idlocation CDATA #IMPLIED

 delay CDATA #IMPLIED

 delayexpr CDATA #IMPLIED

 namelist CDATA #IMPLIED>

<!ELEMENT param>

<!ATTLIST param

 name CDATA #REQUIRED

 expr CDATA #IMPLIED

 location CDATA #IMPLIED

 type (integer | string) "integer">

<!ELEMENT assign>

<!ATTLIST assign

 location CDATA #REQUIRED

 expr CDATA #IMPLIED>

<!ATTLIST log

 label CDATA #IMPLIED

 expr CDATA #REQUIRED >

